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WIAS Berlin

• Weierstrass Institute of Applied Analysis and Stochastics

◦ goal: project-oriented research in Applied Mathematics

• founded 1992 as successor of the Mathematical Institute of the Academy of

Science of the G.D.R.

• member of the Leibniz Association

• ≈ 120 researchers in eight research groups

• situated in the center of Berlin

• has been hosting permanent office of the International Mathematical Union (IMU)

since 2011
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Outline of the Lectures

1 The Navier–Stokes Equations as Model for Incompressible Flows

2 Finite Element Spaces for Linear Saddle Point Problems

3 Finite Element Error Analysis of the Stokes Equations

4 Stabilizing Non Inf-Sup Stable Finite Elements

5 On Mass Conservation and the Divergence Constraint

6 Stabilizing Dominant Convection for Oseen Problems

7 The Stationary Navier–Stokes Equation

8 The Time-Dependent Navier–Stokes Equations – Analysis

9 The Time-Dependent Navier–Stokes Equations – Schemes

10 Outlook: Simulation of Turbulent Flows
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• xiii+812 pages
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1. The Navier–Stokes Equations as Model
for Incompressible Flows

Finite Element Methods for Incompressible Flow Problems · LNCC, Petropolis, February 25 – 28, 2019 · Page 7 (305)



1 A Model for Incompressible Flows

• conservation laws

◦ conservation of linear momentum

◦ conservation of mass

• flow variables

◦ ρ(t,x) : density [kg/m3]

◦ v(t,x) : velocity [m/s]

◦ P (t,x) : pressure [N/m2]

assumed to be sufficiently smooth in

• Ω ⊂ R3

• [0, T ]
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1 Conservation of Mass

• change of fluid in arbitrary volume ω

− ∂

∂t

∫
ω

ρ dx

︸ ︷︷ ︸
mass

=

∫
∂ω

ρv · n ds

︸ ︷︷ ︸
transport through bdry

=

∫
ω

∇ · (ρv) dx

• ω arbitrary =⇒ continuity equation

∂tρ+∇ · (ρv) = 0

• incompressibility (ρ = const)

∇ · v = 0
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1 Newton’s Second Law of Motion

• Newton’s second law of motion

net force = mass × acceleration

• conservation of momentum: linear momentum in an arbitrary volume ω is given by∫
ω

ρv(t,x) dx [Ns]

◦ formulation analogously to conservation of mass

d

dt

∫
ω

ρv(t,x) dx = −
∫
∂ω

(ρv) (v · n) (t, s) ds+

∫
ω

fnet(t,x) dx [N]

with

v(v · n) =

v1v1n1 + v1v2n2 + v1v3n3

v2v1n1 + v2v2n2 + v2v3n3

v3v1n1 + v3v2n2 + v3v3n3

 = vvTn
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1 Newton’s Second Law of Motion

• conservation of momentum

◦ integration by parts∫
ω

(
∂t (ρv) +∇ ·

(
ρvvT

))
(t,x) dx =

∫
ω

fnet(t,x) dx

◦ product rule∫
ω

(
∂tρv + ρ∂tv + vvT∇ρ+ ρ(∇ · v)v + ρ(v · ∇)v

)
(t,x) dx

=

∫
ω

fnet(t,x) dx

◦ ρ is constant (=⇒ ∇ · v = 0)∫
ω

ρ (∂tv + (v · ∇)v) (t,x) dx =

∫
ω

fnet(t,x) dx

◦ ω arbitrary

ρ (∂tv + (v · ∇)v) = fnet ∀ t ∈ (0, T ], x ∈ Ω
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1 Newton’s Second Law of Motion

• acting forces on an arbitrary volume ω:

sum of external (body) forces

◦ gravity

and internal (molecular) forces

◦ pressure

◦ viscous drag that a ’fluid element’ exerts on the ’adjacent element’

◦ contact forces: act only on surface of ’fluid element’∫
ω

F (t,x) dx+

∫
∂ω

t(t, s) ds

t [N/m2] – Cauchy stress vector

• principle of Cauchy: internal contact forces depend (geometrically) only on the

orientation of the surface

t = t(n)

n – unit normal vector of the surface pointing outwards of ω
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1 Newton’s Second Law of Motion

• it can be shown: conservation of linear momentum results in linear dependency

on n

t = Sn

S(t,x) [N/m2] – stress tensor, dimension 3× 3

• divergence theorem ∫
∂ω

t(t, s) ds =

∫
ω

∇ · S(t,x) dx

• momentum equation

ρ (∂tv + (v · ∇)v) = ∇ · S + F ∀ t ∈ (0, T ], x ∈ Ω
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1 Newton’s Second Law of Motion

• model for the stress tensor

◦ torque

M0 =

∫
ω

r × F dx+

∫
∂ω

r × (Sn) ds [Nm]

at equilibrium is zero =⇒ symmetry S = ST

◦ decomposition

S = V + P I

V [N/m2] – viscous stress tensor

◦ pressure P acts only normal to the surface, directed into ω

−
∫
∂ω

Pn ds = −
∫
ω

∇P dx = −
∫
ω

∇ · (P I) dx
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1 Newton’s Second Law of Motion

• model for the stress tensor (cont.)

◦ viscous stress tensor

− friction between fluid particles can only occur if the particles move with

different velocities

− =⇒ viscous stress tensor depends on gradient of velocity

− because of symmetry: on symmetric part of the gradient: velocity

deformation tensor

D (v) =
∇v + (∇v)

T

2

− velocity not too large: dependency is linear (Newtonian fluids)

V = 2µD (v) +

(
ζ − 2µ

3

)
(∇ · v) I

µ [kg/m s] – dynamic or shear viscosity

ζ [kg/m s] – second order viscosity
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1 Navier–Stokes Equations

• general Navier–Stokes equations

ρ (∂tv + (v · ∇)v)

−2∇ · (µD (v))−∇ ·
((
ζ − 2µ

3

)
∇ · vI

)
+∇P = F in (0, T ]× Ω,

∂tρ+∇ · (ρv) = 0 in (0, T ]× Ω

• incompressible flows: incompressible Navier–Stokes equations

∂tv − 2ν∇ · D (v) + (v · ∇)v +∇ P
ρ0

=
F

ρ0
in (0, T ]× Ω,

∇ · v = 0 in (0, T ]× Ω
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1 Navier–Stokes Equations

• Claude Louis Marie Henri Navier (1785 – 1836)

George Gabriel Stokes (1819 – 1903)
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1 Dimensionless Incompressible Navier–Stokes Equations

• dimensionless equations needed for (numerical) analysis and numerical

simulations

• reference quantities of flow problem

◦ L [m] – a characteristic length scale (diameter of a channel, diameter of a

body in the flow)

◦ U [m/s] – a characteristic velocity scale (inflow velocity)

◦ T ∗ [s] – a characteristic time scale (period in periodic flows)

• transform of variables

x =
x′

L
, u =

v

U
, t =

t′

T ∗

• rescaling

L

UT ∗
∂tu−

2ν

UL
∇ · D (u) + (u · ∇)u+∇ P

ρ0U2
=

L

ρ0U2
F in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω

Finite Element Methods for Incompressible Flow Problems · LNCC, Petropolis, February 25 – 28, 2019 · Page 18 (305)



1 Dimensionless Incompressible Navier–Stokes Equations

• defining

p =
P

ρ0U2
, Re =

UL

ν
, St =

L

UT ∗
, f =

L

ρ0U2
F

p – new pressure

Re – Reynolds number

St – Strouhal number

f – new right-hand side

• result

St∂tu−
2

Re
∇ · D (u) + (u · ∇)u+∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω

• generally T ∗ = L/U =⇒ St = 1
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1 Dimensionless Incompressible Navier–Stokes Equations

• dimensionless Navier–Stokes equations

◦ conservation of linear momentum

◦ conservation of mass

∂tu− 2Re−1∇ · D(u) +∇ · (uuT ) +∇p = f in (0, T ]× Ω,
∇ · u = 0 in (0, T ]× Ω,

u(0,x) = u0 in Ω

+ boundary conditions

• given:

◦ Ω ⊂ Rd, d ∈ {2, 3}: domain

◦ T : final time

◦ f : external forces

◦ u0: initial velocity

◦ boundary conditions

• parameter: Reynolds number Re

• to compute:

◦ velocity u, with

D(u) =
∇u+∇uT

2
,

velocity deformation tensor

◦ pressure p
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1 The Reynolds Number

• Reynolds number

Re =
LU

ν

=
convective forces

viscous forces

Osborne Reynolds (1842 – 1912)
• rough classification of flows:

◦ Re small: steady-state flow field (if data do not depend on time)

◦ Re larger: laminar time-dependent flow field

◦ Re very large: turbulent flows
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1 Dimensionless Incompressible Navier–Stokes Equations

• simplified form (for mathematics)

∂tu− 2ν∇ · D (u) + (u · ∇)u+∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω

ν = Re−1 – dimensionless viscosity

• alternative expression of viscous term (due to∇ · u = 0)

2∇ · D (u) = ∆u

• alternative expression of convective term (due to∇ · u = 0)

(u · ∇)u = ∇ · (uuT )
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1 Incompressible Navier–Stokes Equations

• special cases

◦ steady-state Navier–Stokes equations: stationary flow fields

−ν∆u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω

◦ Oseen equations: convection field known (appears in numerical algorithms, for

analysis)

−ν∆u+ (u0 · ∇)u+∇p+ cu = f in Ω,

∇ · u = 0 in Ω

◦ Stokes equations: no convection (appears in numerical algorithms)

−∆u+∇p = f in Ω,

∇ · u = 0 in Ω
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1 Incompressible Navier–Stokes Equations

• boundary conditions

◦ Dirichlet boundary conditions (inflows)

u(t,x) = g(t,x) in (0, T ]× Γdiri ⊂ Γ

g(t,x) = 0 – no slip boundary condition (walls)

u(t,x) = 0 ⇐⇒ u(t,x) · n = 0, u(t,x) · t1 = 0, u(t,x) · t2 = 0

no penetration, no slip

◦ free slip boundary condition (e.g., symmetry planes)

u · n = g in (0, T ]× Γslip ⊂ Γ,

nTStk = 0 in (0, T ]× Γslip, 1 ≤ k ≤ d− 1

g = 0 – no penetration
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1 Incompressible Navier–Stokes Equations

• boundary conditions (cont.)

◦ do-nothing boundary conditions (outflow)

Sn = 0 in (0, T ]× Γoutf ⊂ Γ

◦ periodic boundary conditions (only for analysis, Ω = (0, l)d)

u(t,x+ lei) = u(t,x) ∀ (t,x) ∈ (0, T ]× Γ
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1 Incompressible Navier–Stokes Equations

• difficulties for mathematical analysis and numerical simulations

◦ coupling of velocity and pressure

◦ nonlinearity of the convective term

◦ the convective term dominates the viscous term, i.e., ν is small
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2. Finite Element Spaces for
Linear Saddle Point Problems
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2 Linear Saddle Point Problems

• motivation

◦ iterative solution of Navier–Stokes equations leads to linear systems of

equations

◦ linear systems have special form: saddle point problem (no pressure

contribution in second equation)

◦ sufficient and necessary condition on unique solvability needed

◦ can be derived in abstract form, see [1,2]

[1] Girault, Raviart: Finite Element Methods for Navier-Stokes Equations 1986

[2] J.: Finite Element Methods for Incompressible Flow Problems 2016, Chapter 3.1
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2 Linear Saddle Point Problems

• spaces: V,Q – real Hilbert spaces

• bilinear forms:

a(·, ·) : V × V → R, b(·, ·) : V ×Q→ R

• linear problem: Find (u, p) ∈ V ×Q such that for given (f, r) ∈ V ′ ×Q′

a(u, v) + b(v, p) = 〈f, v〉V ′,V ∀ v ∈ V,
b(u, q) = 〈r, q〉Q′,Q ∀ q ∈ Q

• conditions on the spaces and bilinear forms necessary
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2 Linear Saddle Point Problems

• associated linear operators

A ∈ L (V, V ′) defined by 〈Au, v〉V ′,V = a(u, v) ∀ u, v ∈ V
B ∈ L (V,Q′) defined by 〈Bu, q〉Q′,Q = b(u, q) ∀ u ∈ V, ∀ q ∈ Q

• dual operator: B′ ∈ L(Q,V ′) defined by

〈B′q, v〉V ′,V = 〈Bv, q〉Q′,Q = b(v, q) ∀ v ∈ V, ∀ q ∈ Q

• linear problem in operator form: Find (u, p) ∈ V ×Q such that

Au +B′p = f in V ′,

Bu = r in Q′
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2 Well-Posedness of a Finite-Dimensional Problem

• for finite-dimensional spaces, problem can be written in matrix-vector form(
A BT

B 0

)(
u

p

)
=

(
f

0

)
,

(
A BT

B 0

)
∈ R(nV +nQ)×(nV +nQ),

unique solution⇐⇒ matrix has full rank

• necessary condition: nQ ≤ nV
◦ last rows of the system matrix span space of at most dimension nV

• assume that A is non-singular, then the system matrix is non-singular if and only if

B has full rank, i.e., rank(B) = nQ
• rank(B) = nQ if and only if

inf
q∈RnQ\0

sup
v∈RnV \0

vTBT q

‖v‖2
∥∥q∥∥

2

≥ β > 0

◦ proof much simpler as for infinite-dimensional case, board p. 29
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2 The Inf-Sup Condition – Bilinear Form b(·, ·)

• spaces

◦ V0 := V (0) = ker(B), V = V ⊥0 ⊕ V0

◦ Ṽ ′ = {φ ∈ V ′ : 〈φ, v〉V ′,V = 0 ∀ v ∈ V0} ⊂ V ′
• inf-sup condition: The three following properties are equivalent:

i) There exists a constant βis > 0 such that

inf
q∈Q

sup
v∈V

b(v, q)

‖v‖V ‖q‖Q
≥ βis.

ii) The operator B′ is an isomorphism from Q onto Ṽ ′ and

‖B′q‖V ′ ≥ βis ‖q‖Q ∀ q ∈ Q.

iii) The operator B is an isomorphism from V ⊥0 onto Q′ and

‖Bv‖Q′ ≥ βis ‖v‖V ∀ v ∈ V ⊥0 .
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2 The Inf-Sup Condition – Bilinear Form b(·, ·)

• derived in [1]

• related condition derived already in [2]: Babuška–Brezzi condition

• sometimes: Ladyzhenskaya–Babuška–Brezzi condition, LBB condition

[1] Brezzi: Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8, 129–151, 1974

[2] Babuška: Numer. Math. 16, 322–333, 1971
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2 Unique Solution of Linear Saddle Point Problem

• sufficient and necessary conditions for unique solution of saddle point problem

can be formulated with projection operator, see [1]

• sufficient conditions

◦ a(·, ·) is V0-elliptic, i.e., there is a constant α > 0 such that

a(v, v) ≥ α ‖v‖2V ∀ v ∈ V0

◦ b(·, ·) satisfies inf-sup condition

[1] J.: Finite Element Methods for Incompressible Flow Problems 2016, Chapter 3.1
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2 Continuous Incompressible Flow Problems

• for simplicity: Dirichlet boundary conditions on whole boundary

• velocity space

V = H1
0 (Ω) =

{
v : v ∈ H1(Ω) with v = 0 on ∂Ω

}
with

(v,w) =

∫
Ω

(∇v · ∇w) (x) dx, ‖v‖V := ‖∇v‖L2(Ω)

dual space: V ′ = H−1(Ω)

• pressure space

Q = L2
0 (Ω) =

{
q : q ∈ L2(Ω) with

∫
Ω

q(x) dx = 0

}
with

(q, r) =

∫
Ω

(qr)(x) dx, ‖q‖Q = ‖q‖L2(Ω)

• dual space: Q′ = Q
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2 Continuous Incompressible Flow Problems

• bilinear form for coupling velocity and pressure

b(v, q) = −
∫

Ω

q∇ · v dx = −(∇ · v, q) v ∈ V, q ∈ Q

• divergence operator

div : V → range(div), v 7→ ∇ · v

• it can be shown: range(div) = Q′

• associated linear operator: negative divergence operator

B ∈ L(V,Q′), B = −div
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2 Continuous Incompressible Flow Problems

• dual operator: gradient operator

grad : Q→ range(grad), q 7→ ∇q

with

B′ ∈ L(Q,V ′), B′ = grad

• kernel of B: space of weakly divergence-free functions

V0 = Vdiv = {v ∈ V : (∇ · v, q) = 0 ∀ q ∈ Q}
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2 Continuous Incompressible Flow Problems

• estimating divergence by gradient

‖∇ · v‖L2(Ω) ≤
√
d ‖∇v‖L2(Ω) ∀ v ∈ H1(Ω)

◦ proof: board, p. 45

◦ estimate is sharp

• estimating divergence by gradient

‖∇ · v‖L2(Ω) ≤ ‖∇v‖L2(Ω) ∀ v ∈ H1
0 (Ω)

◦ proof: based on identity

−∆v = −∇ (∇ · v) + rot rot v

and integration by parts

• boundedness and continuity of b(·, ·)
|b(v, q)| ≤ ‖v‖V ‖q‖Q

◦ proof: board, p. 47
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2 Continuous Incompressible Flow Problems

• one can show: div is an isomorphism from V ⊥div onto Q

• corollary: each pressure is the divergence of a velocity field:

for each q ∈ Q there is a unique v ∈ V ⊥div ⊂ V such that

∇ · v = q and ‖q‖Q ≤ ‖v‖V , ‖v‖V ≤ C ‖q‖Q

with C independent of v and q

◦ proof: board, p. 50

• V and Q satisfy the inf-sup condition, i.e., there is a βis > 0 such that

inf
q∈Q

sup
v∈V

(∇ · v, q)
‖v‖V ‖q‖Q

≥ βis

◦ proof: board, p. 51
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2 FE Spaces for Incompressible Flow Problems

• idea: replace infinite-dimensional spaces V and Q by finite-dimensional spaces

• finite element spaces

◦ V h – finite element velocity space

◦ Qh – finite element pressure space

◦ V h/Qh – pair

• conforming finite element spaces: V h ⊂ V and Qh ⊂ Q
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2 Finite Element Spaces for Incompressible Flow Problems

• bilinear form ah : V h × V h → R

ah
(
vh,wh

)
:=

∑
K∈T h

(
∇vh,∇wh

)
K

if conf.

=

(
∇vh,∇wh

)
◦ T h – triangulation of Ω

◦ K ∈ T h – mesh cells

• bilinear form bh : V h ×Qh → R

bh
(
vh, qh

)
:= −

∑
K∈T h

(
∇ · vh, qh

)
K

if conf.

=
−
(
∇ · vh, qh

)
• norm in velocity finite element space∥∥vh∥∥2

V h =
(
vh,vh

)
V h =

∑
K∈T h

(
∇vh,∇vh

)
K

if conf.

=

(
∇vh,∇vh

)
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2 The Discrete Inf-Sup Condition

• discrete inf-sup condition needed (finite-dimensional spaces are Hilbert spaces)

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

bh
(
vh, qh

)
‖vh‖V h ‖qh‖L2(Ω)

≥ βhis > 0

◦ not inherited from inf-sup condition fulfilled by V and Q

◦ discussion: board, p. 53
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2 Discretely Divergence-Free Functions

• space of discretely divergence-free functions

V hdiv =
{
vh ∈ V h : bh

(
vh, qh

)
= 0 ∀ qh ∈ Qh

}
◦ generally very hard to construct

• generally V hdiv 6⊂ Vdiv

◦ finite element velocities not weakly or pointwise divergence-free

◦ conservation of mass violated =⇒ Chapter 5

• best approximation estimate for V hdiv. Let v ∈ Vdiv and let the discrete inf-sup

condition hold, then

inf
vh∈V h

div

∥∥∇ (v − vh)∥∥
L2(Ω)

≤
(

1 +
1

βhis

)
inf

wh∈V h

∥∥∇ (v −wh
)∥∥
L2(Ω)

• for certain pairs of finite element spaces estimate with local inf-sup constant [1]

[1] Girault, Scott; Calcolo 40, 1–19, 2003
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2 Finite Elements

• piecewise constant finite elements P0, (Q0)

one degree of freedom (d.o.f.) per mesh cell

• continuous piecewise linear finite elements P1

d d.o.f. per mesh cell
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2 Finite Elements

• continuous piecewise quadratic finite elements P2

(d+ 1)(d+ 2)/2 d.o.f. per mesh cell

• continuous piecewise bilinear finite elements Q1

2d d.o.f. per mesh cell

• and so on for continuous finite elements of higher order
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2 Finite Elements

• nonconforming linear finite elements P nc
1 , Crouzeix, Raviart (1973)

continuous only in barycenters of faces

d+ 1 d.o.f. per mesh cell
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2 Finite Elements

• rotated bilinear finite element Qrot
1 , Rannacher, Turek (1992)

◦ continuous only in barycenters of faces

◦ 2d d.o.f. per mesh cell

• discontinuous linear finite element P disc
1

◦ defined by integral nodal functionals

e.g., ϕh ∈ P disc
1 if ϕh is linear on a mesh cell K (2d) and∫

K

ϕh(x) dx = 0,

∫
K

xϕh(x) dx = 1,

∫
K

yϕh(x) dx = 0

◦ d+ 1 d.o.f. per mesh cell
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2 FE Spaces Violating the Discrete Inf-Sup Condition

• criterion for violation of discrete inf-sup condition: there is non-trivial qh ∈ Qh
such that

bh
(
vh, qh

)
= 0 ∀ vh ∈ V h

=⇒
sup

vh∈V h\{0}

bh
(
vh, qh

)
‖vh‖V h

= 0

• P1/P1 pair of finite element spaces violates discrete inf-sup condition

◦ counter example: checkerboard instability, board p. 63
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2 FE Spaces Violating the Discrete Inf-Sup Condition

• other pairs which violated discrete inf-sup condition

◦ P1/P0

◦ Q1/Q0

◦ Pk/Pk, k ≥ 1

◦ Qk/Qk, k ≥ 1

◦ Pk/P disc
k−1, k ≥ 2, on a special macro cell

• summary:

◦ many easy to implement pairs violate discrete inf-sup condition

◦ different finite element spaces for velocity and pressure necessary
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2 FE Spaces Satisfying the Discrete Inf-Sup Condition

• pairs which fulfill discrete inf-sup condition

◦ Pk/Pk−1, Qk/Qk−1: Taylor–Hood finite elements [1]

− proofs: 2D, k = 2 [2], general [3,4]

◦ Qk/P disc
k−1

◦ Pk/P disc
k−1, k ≥ d, on very special meshes (Scott–Vogelius element)

◦ P bubble
1 /P1, MINI element

◦ P bubble
k /P disc

k−1 [5]

◦ P nc
1 /P0, Crouzeix–Raviart element [6]

◦ Qrot
1 /Q0, Rannacher–Turek element [7]

◦
...

[1] Taylor, Hood; Comput. Fluids 1, 73-100, 1973

[2] Verfürth; RAIRO Anal. Numér. 18, 175–182, 1984

[3] Boffi; Math. Models Methods Appl. Sci. 4,223–235, 1994

[4] Boffi; SIAM J. Numer. Anal. 34, 664–670, 1997

[5] Bernardi, Raugel; Math. Comp. 44, 71–79, 1985

[6] Crouzeix, Raviart; RAIRO. Anal. Numér. 7, 33–76, 1973

[7] Rannacher, Turek; Numer. Meth. Part. Diff. Equ. 8, 97–111, 1992
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2 FE Spaces Satisfying the Discrete Inf-Sup Condition

• techniques for proving the discrete inf-sup condition

◦ construction of Fortin operator [1]

◦ using projection to piecewise constant pressure [2]

◦ macroelement techniques [3,4]

◦ criterion from [5] for continuous finite element pressure: to show

sup
vh∈V h\{0}

b(vh, qh)

‖vh‖V
≥ β2

 ∑
K∈T h

h2
K

∥∥∇qh∥∥2

L2(K)

1/2

∀ qh ∈ Qh

◦ survey in [6]

[1] Fortin; RAIRO Anal. Numér. 11, 341–354, 1977

[2] Brezzi, Bathe; Comput. Methods Appl. Mech. Engrg. 82, 27–57, 1990

[3] Boland, Nicolaides; SIAM J. Numer. Anal. 20, 722–731, 1983

[4] Stenberg; Math. Comp. 32, 9–23, 1984

[5] Verfürth; RAIRO Anal. Numér. 18, 175–18, 1984

[6] Boffi, Brezzi, Fortin; Lecture Notes in Mathematics 1939, Springer, 45–100, 2008
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2 Fortin Operator

• connection between the continuous and the discrete inf-sup condition

◦ let V,Q satisfy the continuous inf-sup condition

◦ let V h ⊂ V and Qh ⊂ Q
◦ =⇒ V h and Qh satisfy the discrete inf-sup condition if and only if there exists

a constant γh > 0, independent of h, such that for all v ∈ V there is an

element PhForv ∈ V h with

b
(
v, qh

)
= b

(
PhForv, q

h
)
∀ qh ∈ Qh and

∥∥PhForv
∥∥
V
≤ γh ‖v‖V

◦ proof⇐=: board p. 73

Finite Element Methods for Incompressible Flow Problems · LNCC, Petropolis, February 25 – 28, 2019 · Page 52 (305)



2 Fortin Operator

• general approach for constructing Fortin operator

PhFor ∈ L(V, V h) v 7→ PhClev + Ph2
(
v − PhClev

)
with

◦ PhCle – Clément operator (modification which preserves homogeneous

Dirichlet boundary conditions)

◦ ∥∥Ph2 v∥∥H1(K)
≤ C

(
h−1
K ‖v‖L2(K) + |v|H1(K)

)
, ∀ K ∈ T h, ∀ v ∈ V

• used to prove, e.g., inf-sup condition for MINI element P1 ⊕ V hbub/P1 [1],

• Fortin operator approach can be extended to Crouzeix–Raviart element P nc
1 /P0

and Rannacher–Turek element Qrot
1 /Q0

[1] Arnold, Brezzi, Fortin; Calcolo 21, 337–344, 1984
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2 Macroelement Techniques

• goal: reduce proof of global inf-sup condition to proof of local inf-sup conditions

• Boland, Nicolaides (1983)

◦ Qk/P disc
k−1, k ≥ 2 (unmapped [1], mapped [2])

• Stenberg (1984)

◦ Taylor–Hood Pk/Pk−1, Qk/Qk−1, k ≥ 2 [3]

◦ unmapped Q2/P
disc
1 in 2d [4]

◦ Scott–Vogelius Pk/P disc
k−1, k ≥ 3, in 3d on barycentric meshes [5]

• general theory for both approaches somewhat technical

[1] Girault, Raviart; Springer-Verlag, 1986

[2] Matthies, Tobiska; Computing 69, 119–139, 2002

[3] Stenberg; Math. Comp. 54, 495–508, 1990

[4] Stenberg; Math. Comp. 32, 9–23, 1984

[5] Zhang; Math. Comp. 74, 543–554, 2005
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2 Computing the Discrete Inf-Sup Constant

• from Riesz representation theorem: there is vhb ∈ V h such that for fixed qh ∈ Qh(
vhb ,v

h
)
V h = bh

(
vh, qh

)
∀ vh ∈ V h

• it follows for all vh ∈ V h

bh
(
vh, qh

)
≤
∥∥vhb∥∥V h

∥∥vh∥∥
V h =⇒ sup

vh∈V h\{0}

bh
(
vh, qh

)
‖vh‖V h

≤
∥∥vhb∥∥V h

• supremum is attained, since

bh
(
vhb , q

h
)∥∥vhb∥∥V h

=
∥∥vhb∥∥V h =⇒ vhb = arg sup

vh∈V h\{0}

bh
(
vh, qh

)
‖vh‖V h

• it follows

(
βhis
)2

= inf
qh∈Qh\{0}

sup
vh∈V h\{0}

(
bh
(
vh, qh

))2
‖vh‖2V h ‖qh‖2Q

= inf
qh∈Qh\{0}

∥∥vhb∥∥2

V h

‖qh‖2Q
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2 Computing the Discrete Inf-Sup Constant
• equip spaces with bases =⇒ Gramian matrices

MV =
((
φhj ,φ

h
i

)
V h

)Nu

i,j=1
, MQ =

((
ψhj , ψ

h
i

)
Qh

)Np

i,j=1

and bilinear forms and norms(
vhb ,v

h
)
V h = bTMT

V v, bh
(
vh, qh

)
= vTBT q,

∥∥vhb∥∥2

V h = bTMT
V b

• one obtains from Riesz condition

bTMT
V v = vTBT q ⇐⇒ vTMV b = vTBT q ∀ v ∈ RNu ,

from what follows that

MV b = BT q =⇒ b = M−1
V BT q

• inserting in discrete inf-sup condition(
βhis
)2

= inf
q∈RNq\{0}

bTMT
V b

qTMT
Qq

= inf
q∈RNq\{0}

qTBM−TV MT
VM

−1
V BT q

qTMT
Qq

= inf
q∈RNq\{0}

qTBM−1
V BT q

qTMT
Qq
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2 Computing the Discrete Inf-Sup Constant

• MV and MQ are symmetric and positive definite(
qTM

1/2
Q

)(
M
−1/2
Q BM

−T/2
V

)(
M
−1/2
V BTM

−T/2
Q

)(
M

T/2
Q q

)
(
qTM

1/2
Q

)(
M

T/2
Q q

)
=⇒ Rayleigh quotient

• infimum is smallest eigenvalue of(
M
−1/2
Q BM

−T/2
V

)(
M
−1/2
V BTM

−T/2
Q

)(
M

T/2
Q q

)
= λ

(
M

T/2
Q q

)
or (multiply with M1/2

Q )

BM−1
V BT q = λMQq

• discrete inf-sup constant is square root of smallest eigenvalue of this generalized

eigenvalue problem
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3. Finite Element Error Analysis of the Stokes Equations
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3 Stokes and Scaled Stokes Equations

• continuous equation
−∆u+∇p = f in Ω,

∇ · u = 0 in Ω
(1)

for simplicity: homogeneous Dirichlet boundary conditions

• difficulty: coupling of velocity and pressure

• properties

◦ linear

◦ form
−ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω

becomes (1) by rescaling with new pressure, right-hand side
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3 Finite Element Discretization

• finite element problem: Find (uh, ph) ∈ V h ×Qh such that

ah
(
uh,vh

)
+ bh

(
vh, ph

)
=

(
f ,vh

)
∀ vh ∈ V h,

bh
(
uh, qh

)
= 0 ∀ qh ∈ Qh

with

ah
(
vh,wh

)
=
∑
K∈T h

(
∇vh,∇wh

)
K
, bh

(
vh, qh

)
= −

∑
K∈T h

(
∇ · vh, qh

)
K

• only conforming inf-sup stable finite element spaces

◦ V h ⊂ V and Qh ⊂ Q
◦

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

bh
(
vh, qh

)
‖vh‖V h ‖qh‖L2(Ω)

≥ βhis > 0
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3 Finite Element Analysis

• existence and uniqueness of a solution

◦ apply theory of linear saddle point problems

• stability ∥∥∇uh∥∥
L2(Ω)

≤ ‖f‖H−1(Ω) ,
∥∥ph∥∥

L2(Ω)
≤ 2

βhis
‖f‖H−1(Ω)

◦ proof: same as for continuous problem, board, p. 139

• goal of finite element error analysis: estimate error by best approximation errors

◦ best approximation errors depend only on finite element spaces, not on

problem

◦ estimates for best approximation errors are known (interpolation errors)

• reduction to a problem on the space of discretely divergence-free functions

a
(
uh,vh

)
=
(
∇uh,∇vh

)
=
(
f ,vh

)
∀ vh ∈ V hdiv
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3 Finite Element Error Analysis

• finite element error estimate for the L2(Ω) norm of the gradient of the velocity

◦ Ω ⊂ Rd, bounded, polyhedral, Lipschitz-continuous boundary

◦ general case: V hdiv 6⊂ Vdiv

∥∥∇(u− uh)
∥∥
L2(Ω)

≤ 2 inf
vh∈V h

div

∥∥∇(u− vh)
∥∥
L2(Ω)

+ inf
qh∈Qh

∥∥p− qh∥∥
L2(Ω)

◦ proof: board, p. 146/147

◦ velocity error (bound) depends on pressure

• polyhedral domain in three di-

mensions which is not Lipschitz-

continuous
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3 Finite Element Error Analysis

• finite element error estimate for the L2(Ω) norm of the pressure

◦ same assumptions as for previous estimate

∥∥p− ph∥∥
L2(Ω)

≤ 2

βhis
inf

vh∈V h
div

∥∥∇(u− vh)
∥∥
L2(Ω)

+

(
1 +

2

βhis

)
inf

qh∈Qh

∥∥p− qh∥∥
L2(Ω)

◦ proof: board, p. 149
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3 Finite Element Error Analysis

• error of the velocity in the L2(Ω) norm

◦ by Poincaré inequality not optimal∥∥u− uh∥∥
L2(Ω)

≤ C
∥∥∇(u− uh)

∥∥
L2(Ω)

• regular dual Stokes problem: For given f̂ ∈ L2(Ω), find (φf̂ , ξf̂ ) ∈ V ×Q such

that
−∆φf̂ +∇ξf̂ = f̂ in Ω,

∇ · φf̂ = 0 in Ω

◦ regular if mapping (
φf̂ , ξf̂

)
7→ −∆φf̂ +∇ξf̂

is an isomorphism from
(
H2(Ω) ∩ V

)
×
(
H1(Ω) ∩Q

)
onto L2(Ω)

◦ Γ of class C2

◦ bounded, convex polygons in two dimensions
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3 Finite Element Error Analysis

• finite element error estimate for the L2(Ω) norm of the velocity

◦ same assumptions as for previous estimates

◦ dual Stokes problem regular with solution (φf̂ , ξf̂ )∥∥u− uh∥∥
L2(Ω)

≤
(∥∥∇ (u− uh)∥∥

L2(Ω)
+ inf
qh∈Qh

∥∥p− qh∥∥
L2(Ω)

)
× sup
f̂∈L2(Ω)

1∥∥∥f̂∥∥∥
L2(Ω)

[(
1 +

1

βhis

)
inf

φh∈V h

∥∥∥∇(φf̂ − φh)∥∥∥
L2(Ω)

+ inf
rh∈Qh

∥∥∥ξf̂ − rh∥∥∥
L2(Ω)

]
◦ velocity error (bound) depends on pressure
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3 Finite Element Error Analysis

• finite element error estimates for conforming pairs of finite element spaces

◦ same assumptions on domain as for previous estimates

◦ solution sufficiently regular

◦ h – mesh width of triangulation

◦ spaces

− P bubble
k /Pk, k = 1 (MINI element),

− Pk/Pk−1, Qk/Qk−1, k ≥ 2 (Taylor–Hood element),

− P bubble
k /P disc

k−1, Qk/P disc
k−1, k ≥ 2

∥∥∇(u− uh)
∥∥
L2(Ω)

≤ Chk
(
‖u‖Hk+1(Ω) + ‖p‖Hk(Ω)

)
∥∥p− ph∥∥

L2(Ω)
≤ Chk

(
‖u‖Hk+1(Ω) + ‖p‖Hk(Ω)

)
◦ velocity error (bound) depends on pressure
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3 Finite Element Error Analysis

• finite element error estimates for conforming pairs of finite element spaces (cont.)

◦ in addition: if dual Stokes problem regular

∥∥u− uh∥∥
L2(Ω)

≤ Chk+1
(
‖u‖Hk+1(Ω) + ‖p‖Hk(Ω)

)
◦ velocity error (bound) depends on pressure
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3 Numerical Example Supporting Order of Convergence

• analytical example which supports the error estimates

• prescribed solution

u =

(
u1

u2

)
=

(
∂yψ

−∂xψ

)
= 200

(
x2(1− x)2y(1− y)(1− 2y)

−x(1− x)(1− 2x)y2(1− y)2

)
p = 10

((
x− 1

2

)3

y2 + (1− x)3

(
y − 1

2

)3
)
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3 Numerical Example Supporting Order of Convergence

• initial grids (level 0)

• red refinement
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3 Numerical Example Supporting Order of Convergences

• convergence of the errors
∥∥∇(u− uh)

∥∥
L2(Ω)

for different discretizations with

different orders k

0 1 2 3 4 5 6 7
levels

10-1

100

||∇
(u
∇u

h
)||

L
2 (
Ω
)

h

P bubble
1 /P1

0 1 2 3 4 5 6 7
levels

10-3
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10-1

100

||∇
(u
∇u

h
)||

L
2 (
Ω
)

h2

P2/P1

P bubble
2 /P disc

1

Q2/Q1

Q2/P
disc
1
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||∇
(u
∇u

h
)||

L
2 (
Ω
)
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2

Q3/Q2

Q3/P
disc
2
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||∇
(u
∇u

h
)||

L
2 (
Ω
)

h4

P4/P3

Q4/Q3

Q4/P
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3
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3 Numerical Example Supporting Order of Convergence

• convergence of the errors
∥∥p− ph∥∥

L2(Ω)
for different discretizations with

different orders k
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3 Numerical Example Supporting Order of Convergence

• convergence of the errors
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3 Numerical Example Supporting Order of Convergence

• convergence of the errors
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3 Scaled Stokes Equations: Finite Element Error Analysis

• scaled Stokes equations

−ν∆u+∇p = f ⇐⇒ −∆u+∇
(p
ν

)
=
f

ν

◦ error estimates∥∥∇(u− uh)
∥∥
L2(Ω)

≤ Chk
(
‖u‖Hk+1(Ω) +

1

ν
‖p‖Hk(Ω)

)
∥∥p− ph∥∥

L2(Ω)
≤ Chk

(
ν ‖u‖Hk+1(Ω) + ‖p‖Hk(Ω)

)
∥∥u− uh∥∥

L2(Ω)
≤ Chk+1

(
‖u‖Hk+1(Ω) +

1

ν
‖p‖Hk(Ω)

)
◦ velocity errors (bounds) depend on pressure and inverse of viscosity
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3 Numerical Example (cont.)

• Taylor–Hood pair of finite element spaces P2/P1

0 1 2 3 4 5 6 7
levels

10-3
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||∇
(u
∇u

h
)||

L
2 (
Ω
)

h2

h2.5
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−p
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|| L
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)
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h3
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Ω
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ν=1

ν=10−2

ν=10−6

ν=10−10

◦ velocity errors depend on inverse of viscosity (on coarse grids)
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3 Finite Element Error Analysis: Special Case

• finite element error estimate for the L2(Ω) norm of the gradient of the velocity

◦ Ω ⊂ Rd, bounded, polyhedral, Lipschitz-continuous boundary

◦ special case: V hdiv ⊂ Vdiv∥∥∇(u− uh)
∥∥
L2(Ω)

≤ 2 inf
vh∈V h

div

∥∥∇(u− vh)
∥∥
L2(Ω)

◦ proof: board, p. 146, p. 161

◦ velocity error does not depend on pressure

• same property for
∥∥u− uh∥∥

L2(Ω)
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3 Finite Element Error Analysis: Special Case

• most important example: Scott–Vogelius [1] finite element barycentric-refined grid:

Pk/P
disc
k−1, k ≥ d

[1] Scott, Vogelius; in Large-scale computations in fluid mechanics, Part 2, 221–244, 1985
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3 Numerical Example: No Flow Problem

• prescribed solution

u = 0, p = 10

(
(x− 0.5)3y + (1− x)2(y − 0.5)2 − 1

36

)
• Taylor–Hood P2/P1
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◦ velocity errors scale with inverse of viscosity
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3 Numerical Example: No Flow Problem (cont.)

• Scott–Vogelius P2/P
disc
1 , barycentric-refined grid
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◦ round-off errors from high condition number of matrix of linear system of

equations
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3 Summary

• large velocity errors can occur in the standard situation V hdiv 6⊂ Vdiv in the

presence of large pressure or small viscosity
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3 Implemention

• ways to implement finite elements

◦ given triangulation of Ω with mesh cells {K}
◦ unmapped finite elements

− define the local finite element on the physical mesh cell K

◦ mapped finite elements

− define finite elements on a reference cell K̂

− define the finite element on K via the reference map from K̂

• remarks

◦ both ways gives the same results for affine reference maps (simplicial mesh

cells, parallelepipeds)

◦ mapped finite elements resemble a standard way for numerical analysis

◦ mapped finite elements require the assembling of quadrature rules, degrees of

freedom, nodal functionals only on reference cell
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3 Implemention

• our choice in the in-house code PARMOON [1,2]: mapped finite elements

◦ reference maps are computed once and stored in a database

◦ multi-linear reference maps possible

• many free libraries included

◦ we found that PETSC is very helpful, since it includes itself many other libraries

[1] J., Matthies; Comput. Vis. Sci. 6, 163–169, 2004

[2] Wilbrandt, Bartsch, et al.; Comput. Math. Appl. 74, 74–88, 2017
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3 Implemention

• implementation

◦ vector-valued velocity space

V h = span{φhi }3Nv
i=1

= span



 φhi

0

0


Nv

i=1

∪


 0

φhi
0


Nv

i=1

∪


 0

0

φhi


Nv

i=1


◦ pressure space

Qh = span{ψhi }
Np

i=1

◦ representation of unknown solution

uh =

3Nv∑
j=1

uhjφ
h
j , ph =

Np∑
j=1

phjψ
h
j
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3 Implementation

• pressure finite element space

◦ standard basis functions not in L2
0(Ω)

◦ it can be shown under mild assumptions that standard basis functions can be

used as ansatz and test functions

◦ computed pressure with standard basis functions has to be projected into

L2
0(Ω) at the end

Finite Element Methods for Incompressible Flow Problems · LNCC, Petropolis, February 25 – 28, 2019 · Page 84 (305)



3 Implementation

• linear saddle point problem(
A BT

B 0

)(
u

p

)
=

(
f

0

)
with

(A)ij = aij =
∑
K∈T h

(
∇φhj ,∇φhi

)
K
, i, j = 1, . . . , 3Nv,

(B)ij = bij = −
∑
K∈T h

(
∇ · φhj , ψhi

)
K
, i = 1, . . . , Np, j = 1, . . . , 3Nv,

(f)i = fi =
∑
K∈T h

(
f ,φhi

)
K
, i = 1, . . . , 3Nv

• dimension (3d): (3Nv +Np)× (3Nv +Np)
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3 Implementation

• matrix A

◦ symmetric

◦ positive definite

◦ block-diagonal matrix

A =

A11 0 0

0 A11 0

0 0 A11



•
(
D
(
uh
)
,D
(
vh
))

instead of
(
∇uh,∇vh

)
◦ equivalent only if uh weakly divergence-free

◦ generally not given for finite element velocities

◦ not longer block-diagonal matrix

A =

A11 A12 A13

AT12 A22 A23

AT13 AT23 A33


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4. Stabilizing Non Inf-Sup Stable Finite Elements
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4 Difficulties of Inf-Sup Stable FEMs

• need implementation of different finite element spaces for velocity and pressure

• one obtains a linear algebraic saddle point problem(
A BT

B 0

)(
u

p

)
=

(
f

0

)
◦ sparse direct solvers only efficient in 2d and for small and medium sized

systems (. 500 000 d.o.f.s)

◦ construction of special preconditioners for iterative methods necessary,

because of zero on main diagonal =⇒ Chapters 7 and 9

• goal: remove saddle point character by removing the zero block

◦ introduce pressure-pressure coupling in mass balance

− several proposals in literature, recent review in [1]

− here: PSPG method

◦ leads automatically to violation of mass conservation

◦ enables use of same finite element spaces for velocity and pressure

[1] J., Knobloch, Wilbrandt; book chapter in ’Fluids under Pressure’, Springer, to appear 2019
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4 The PSPG Method

• Pressure Stabilization Petrov–Galerkin (PSPG) method [1]

• most popular method

• given f ∈ L2(Ω), find
(
uh, ph

)
∈ V h ×Qh such that

Apspg

((
uh, ph

)
,
(
vh, qh

))
= Lpspg

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh

with

Apspg ((u, p) , (v, q)) = ν (∇u,∇v)− (∇ · v, p) + (∇ · u, q)
+
∑
E∈Eh

γE ([|p|]E , [|q|]E)
E

+
∑
K∈T h

(−ν∆u+∇p, δpK∇q)K

and

Lpspg ((v, q)) = (f ,v)+
∑
K∈T h

(f , δpK∇q)K

[1] Hughes, Franca, Balestra; Comput. Methods Appl. Mech. Engrg. 59, 85–99, 1986
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4 The PSPG Method

• meaning of the terms∑
E∈Eh

γE ([|p|]E , [|q|]E)
E

+
∑
K∈T h

(−ν∆u+∇p, δpK∇q)K∑
K∈T h

(f , δpK∇q)K

◦ Eh – set of faces of mesh cells

◦ E – face

◦ T h – triangulation, set of mesh cells

◦ K – mesh cell

◦ γE , δpK – stabilization parameters, positive

◦ [|·|]E – jump across a face

• goal: appropriate choice of stabilization parameters by finite element error analysis
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4 Norm for Finite Element Error Analysis

• finite element error analysis for stabilized methods is usually performed for norms

that include stabilization

• norm for PSPG method

∥∥(vh, qh)∥∥
pspg

=

(
ν
∥∥∇vh∥∥2

L2(Ω)
+
∑
E∈Eh

γE
∥∥[∣∣qh∣∣]

E

∥∥2

L2(E)

+
∑
K∈T h

δpK
∥∥∇qh∥∥2

L2(K)

)1/2

◦ sum of seminorms

◦ to check that from
∥∥(vh, qh)∥∥

pspg
= 0 it follows that vh = 0 and qh = 0:

direct calculation, board p. 202
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4 Properties of the Solution

• existence and uniqueness of a solution if

0 < δpK ≤
h2
K

νC2
inv

conditionally stable

◦ apply basic theorem of linear algebra (finite-dimensional problem):

− bilinear coercive =⇒
− corresponding matrix non-singular =⇒
− unique solution for each right-hand side

− show coercivity of bilinear form, board p. 202/203

Apspg

((
vh, qh

)
,
(
vh, qh

))
≥ 1

2

∥∥(vh, qh)∥∥2

pspg

• Definition: A stabilized discrete method is absolutely stable if it is stable for all

δ > 0, otherwise conditionally stable
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4 Properties of the Solution

• stability of solution

∥∥(uh, ph)∥∥
pspg
≤ 2
√

2

 C

ν1/2
‖f‖L2(Ω) +

 ∑
K∈T h

δpK ‖f‖
2
L2(K)

1/2


◦ use unique solution as test function

• Galerkin orthogonality

Apspg

((
u− uh, p− ph

)
,
(
vh, qh

))
= 0 ∀

(
vh, qh

)
∈ V h ×Qh

◦ direct calculation using definition of PSPG method
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4 Finite Element Error Analysis

• finite element error analysis: let

δpK = C0
h2
K

ν
, γE = C1

hE
ν

and

Pk or Qk ⊆ V h ⊂ V, k ≥ 1, Pl or Ql ⊆ Qh ⊂ Q, l ≥ 0,

then∥∥(u− uh, p− ph)∥∥
pspg
≤ C

(
ν1/2hk ‖u‖Hk+1(Ω) +

hl+1

ν1/2
‖p‖Hl+1(Ω)

)
◦ triangle inequality =⇒ interpolation error + discrete term

◦ coercivity for discrete term

◦ estimate of individual terms on right-hand side by standard estimates

(Cauchy–Schwarz, Young, interpolation error estimates) using bounds for

stabilization parameters
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4 Finite Element Error Analysis

• error estimate∥∥(u− uh, p− ph)∥∥
pspg
≤ C

(
ν1/2hk ‖u‖Hk+1(Ω) +

hl+1

ν1/2
‖p‖Hl+1(Ω)

)
◦ convergence in ‖·‖pspg is at least min{k, l + 1}
◦ neglect all terms in

∥∥(u− uh, p− ph)∥∥
pspg

but
∥∥∇ (u− uh)∥∥

L2(Ω)

shows that ν−1 appears in front of the pressure term

◦ for continuous pressure finite element spaces∥∥∇ (p− ph)∥∥
L2(Ω)

≤ C
(
νhk−1 ‖u‖Hk+1(Ω) + hl ‖p‖Hl+1(Ω)

)
◦ estimates for

∥∥u− uh∥∥
L2(Ω)

and
∥∥p− ph∥∥

L2(Ω)
in [1]

[1] Brezzi, Douglas; Numer. Math. 53, 225–235, 1988
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4 Numerical Example

• analytical example which supports the error estimates

• prescribed solution

u =

(
u1

u2

)
=

(
∂yψ

−∂xψ

)
= 200

(
x2(1− x)2y(1− y)(1− 2y)

−x(1− x)(1− 2x)y2(1− y)2

)
p = 10

((
x− 1

2

)3

y2 + (1− x)3

(
y − 1

2

)3
)

Finite Element Methods for Incompressible Flow Problems · LNCC, Petropolis, February 25 – 28, 2019 · Page 96 (305)



4 Numerical Example

• P1/P1, δpK = 0.5h2
K/ν

0 2 4 6 8 10
levels

10-1
100
101
102
103
104
105
106
107
108
109

||∇
(u
∇u

h
)||

L
2 (
Ω
)

h

ν=106

ν=102

ν=1

ν=10∇2

ν=10∇6

ν=10∇10

0 2 4 6 8 10
levels

10-5
10-4
10-3
10-2
10-1
100
101
102
103
104
105
106
107

||p
−p

h
|| L

2 (
Ω
)

h3/2

ν=106

ν=102

ν=1

ν=10−2

ν=10−6

ν=10−10

0 2 4 6 8 10
levels

10-4
10-3
10-2
10-1
100
101
102
103
104
105
106
107
108

||u
−u

h
|| L

2 (
Ω
)

h2

ν=106

ν=102

ν=1

ν=10−2

ν=10−6

ν=10−10

0 2 4 6 8 10
levels

10-2
10-1
100
101
102
103
104
105
106
107
108
109

||∇
·u

h
|| L

2 (
Ω
)

h

ν=106

ν=102

ν=1

ν=10∇2

ν=10∇6

ν=10∇10

◦ larger velocity errors for small ν, but higher order of convergence
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4 Numerical Example

• P1/P0, γE = 0.5hE/ν
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h
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◦ larger velocity errors for small ν, but higher order of convergence
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4 Post-Processing for P1/P0

• construction of uhRT0
∈ RT0 such that [1]∥∥∇ · (uh + uhRT0

)∥∥
L2(Ω)

= 0

weakly divergence-free

• correction

uhRT0
=
∑
E∈Eh

γE
hE

(∫
E

[∣∣ph∣∣]
E
ds

)
φE

with RT0 basis function

φE |K = ± hE
2 |K| (x− xE) ∈ RT0(K)

can be computed locally

[1] Barrenechea, Valentin; Internat. J. Numer. Methods Engrg. 86, 801–815, 2011
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4 Numerical Example

• post-processed P1/P0

0 2 4 6 8 10
levels

10-5
10-4
10-3
10-2
10-1
100
101
102
103
104
105
106
107
108

||u
h +
u
h R
T
0
|| L

2 (
Ω
)

h2

ν=106

ν=102

ν=1

ν=10−2

ν=10−6

ν=10−10

0 2 4 6 8 10
levels

10-14
10-13
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10-10
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10-8
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10-6
10-5
10-4

||∇
·(
u
h +
u
h R
T
0
)||

L
2 (
Ω
)

h

ν=106

ν=102

ν=1

ν=10∇2

ν=10∇6

ν=10∇10

◦ almost same velocity error in L2(Ω)

◦ but solution is weakly divergence-free
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4 Other Residual-Based Stabilized Methods

• symmetric Galerkin Least Squares (GLS) method [1]

• find
(
uh, ph

)
∈ V h ×Qh such that

Agls

((
uh, ph

)
,
(
vh, qh

))
= Lgls

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh,

with

Agls ((u, p) , (v, q))

= ν (∇u,∇v)− (∇ · v, p)− (∇ · u, q)
−
∑
E∈Eh

γE ([|p|]E , [|q|]E)
E
−
∑
K∈T h

(−ν∆u+∇p, δpK (−ν∆v +∇q))K ,

Lgls ((v, q)) = (f ,v)−
∑
K∈T h

(f , δpK (−ν∆v +∇q))K

• symmetric

• conditionally stable

[1] Hughes, Franca; Comput. Methods Appl. Mech. Engrg. 65, 85–96, 1987
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4 Other Residual-Based Stabilized Methods

• non-symmetric GLS method, absolutely stable method of Douglas and Wang [1]

• find
(
uh, ph

)
∈ V h ×Qh such that

ADW

((
uh, ph

)
,
(
vh, qh

))
= LDW

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh,

with

ADW ((u, p) , (v, q))

= ν (∇u,∇v)− (∇ · v, p) + (∇ · u, q)
+
∑
E∈Eh

γE ([|p|]E , [|q|]E)
E

+
∑
K∈T h

(−ν∆u+∇p, δpK (−ν∆v +∇q))K ,

LDW ((v, q)) = (f ,v)+
∑
K∈T h

(f , δpK (−ν∆v +∇q))K

• non-symmetric

• replace q by −q: difference to symmetric GLS +ν∆v instead of −ν∆v

• absolutely stable

[1] Douglas, Wang; Math. Comp. 52, 495–508, 1989
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4 The PSPG Method

• framework for residual-based stabilizations in [1]

• absolutely stable modification of PSPG method proposed in [1]

◦ using an alternative definition of the discrete Laplacian(
∆hu,vh

)
= −

(
∇u,∇vh

)
∀ u ∈ V, vh ∈ V h

requires solution of a system with mass matrix

• all methods identical if discrete Laplacian is not used, e.g., for P1/P1

• instability of symmetric GLS can be seen in numerical simulations, e.g., in [2]

[1] Bochev, Gunzburger; SIAM J. Numer. Anal. 42, 1189-1207, 2004

[2] J., Knobloch, Wilbrandt; book chapter in ’Fluids under Pressure’, Springer, to appear 2019
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4 Stabilizations Using only the Pressure

• framework in [1]

• stabilization of Brezzi and Pitkäranta, oldest method [2]

• find (uh, ph) ∈ V h ×Qh = P1 × P1 such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
=

(
f ,vh

)
∀ vh ∈ V h,

−
(
∇ · uh, qh

)
−
∑
K∈T h

(
∇ph, δpK∇qh

)
K

= 0 ∀ qh ∈ Qh

• for P1/P1, same matrix is PSPG method

[1] Brezzi, Fortin; Numer. Math. 89, 457–491, 2001

[2] Brezzi, Pitkäranta; Notes Numer. Fluid Mech. 10, 11–19, 1984
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4 Stabilizations Using only the Pressure

• using fluctuations of the pressure [1]

• find
(
uh, ph,∇ph

)
∈ V h ×Qh × V h such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
=

(
f ,vh

)
∀ vh ∈ V h,

−
(
∇ · uh, qh

)
−
∑
K∈T h

(
∇ph −∇ph, δpK∇qh

)
K

= 0 ∀ qh ∈ Qh,(
∇ph −∇ph,vh

)
= 0 ∀ vh ∈ V h

• other stabilizations with fluctuations of the pressure

◦ local projection stabilization (LPS) [2], several variants meanwhile

◦ method of Dohrmann and Bochev [3]

• stabilization with jumps across faces, continuous interior penalty (CIP) method [4]

[1] Codina, Blasco; Comput. Methods Appl. Mech. Engrg. 143, 373–391, 1997

[2] Becker, Braack; Calcolo 38, 173–199, 2001

[3] Dohrmann, Bochev; Internat. J. Numer. Methods Fluids 46, 183–201, 2004

[4] Burman, Hansbo; SIAM J. Numer. Anal. 44, 2393–2410, 2006
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4 Stabilizations Using only the Pressure

• usually extended matrix stencil of the pressure-pressure coupling matrix block C(
A BT

B −C

)(
u

p

)
=

(
f

0

)
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4 Summary

• equal-order methods quite popular

◦ often easy to implement

◦ standard preconditioners in iterative solvers

• several proposals

◦ not clear which is the best

◦ numerical studies in [1]

− PSPG, non-symmetric GLS, one variant of LPS behaved quite similarly

− symmetric GLS shows instabilities if stabilization parameter is too large

• stabilization parameters

◦ finite element error analysis gives asymptotic optimal choice

◦ concrete choice depends on the user, optimal approach not known

• personal opinion: prefer inf-sup stable pairs of finite element spaces

◦ benchmark problem for stationary Navier–Stokes equations [1]: Taylor–Hood

more accurate than all stabilized methods

[1] J., Knobloch, Wilbrandt; book chapter in ’Fluids under Pressure’, Springer, to appear 2019
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5. On Mass Conservation and the Divergence Constraint
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5 Related Problem: Conservation of Mass

• continuous problem:

(∇ · u, q) = 0 ∀ q ∈ Q
◦ infinitely many conditions

◦ inf-sup condition equivalent to∇ · V = Q =⇒ take q = ∇ · u

0 = ‖∇ · u‖L2(Ω) weakly divergence-free

• finite element problem

(∇ · uh, qh) = 0 ∀ qh ∈ Qh discretely divergence-free

◦ finite number of conditions

◦ usually∇ · V h 6⊂ Qh
◦ =⇒ no mass conservation

− not tolerable in certain applications
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5 Numerical Example 1

• no-flow problem: prescribed solution for Stokes problem with ν = 1

u = 0, p = Ra

(
y3 − y2

2
+ y − 7

12

)
• finite elements

◦ P2/P1 – Taylor–Hood

◦ P nc
1 /P0 – Crouzeix–Raviart

0 1 2 3 4 5 6 7
level

10-2

10-1

100

101

102

103

104

105

||∇
(u
∇u

h)
|| L

2 (
Ω
)

Crouzeix-Raviart

Ra=1
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Ra=106

0 1 2 3 4 5 6 7
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10-8
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10-5
10-4
10-3
10-2
10-1
100
101
102
103

||∇
(u
∇u

h)
|| L

2 (
Ω
)

Taylor-Hood P2/P1

Ra=1

Ra=100

Ra=104

Ra=106

◦ velocity error scales with the pressure
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5 Numerical Example 2

• stationary vortex: prescribed solution for Navier–Stokes problem with ν = 1

u =

(−y
x

)
, p = Re

(
x2 + y2

2
− 1

3

)
, Re > 0

• balance of nonlinear term of the Navier–Stokes equations and pressure term

◦ P bubble
1 /P1 – MINI element
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◦ velocity error scales with the pressure
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5 Conclusions

• error scales also with Coriolis force if this term is present

◦ important in meteorology

• fundamental invariance property for continuous equations (with Dirichlet boundary

conditions)

f → f +∇ψ =⇒ (u, p)→ (u, p+ ψ)

physically correct behavior

◦ obviously not satisfied for the considered discretizations

− no-flow problem: f = ∇p
− but change of f changed uh

unphysical behavior

◦ connected with Helmholtz decomposition of vector fields in L2(Ω): every

vector field in L2(Ω) can be decomposed into a gradient field and a weakly

divergence-free field
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5 Grad-Div Stabilization

• very popular technique

• add in continuous problem

0 = −µ∇(∇ · u)

• gives in finite element problem

µ(∇ · uh,∇ · vh)

does not vanish if∇ · uh 6= 0

• stabilized finite element Stokes problem: Find
(
uh, ph

)
∈ V h ×Qh such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
+
∑
K∈T h

µK
(
∇ · uh,∇ · vh

)
K

= 〈f ,vh〉V ′,V ∀ vh ∈ V h,

−
(
∇ · uh, qh

)
= 0 ∀ qh ∈ Qh

{µK} with µK ≥ 0 – stabilization parameters
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5 Grad-Div Stabilization

• fixed triangulation:

lim
µmin→∞

∥∥∇ · uh∥∥
L2(Ω)

= 0

◦ Proof: consider µmin = µ = µK for all K ∈ T h
− use uh as test function, dual pairing, Young’s inequality

ν
∥∥∇uh∥∥2

L2(Ω)
+ µ

∥∥∇ · uh∥∥2

L2(Ω)

= 〈f ,uh〉V ′,V ≤ ‖f‖H−1(Ω)

∥∥∇uh∥∥
L2(Ω)

≤ 1

4ν
‖f‖2H−1(Ω) + ν

∥∥∇uh∥∥2

L2(Ω)

− consequently ∥∥∇ · uh∥∥
L2(Ω)

≤ 1

2ν1/2µ1/2
‖f‖H−1(Ω)

− statement follows

• Question: Large stabilization parameters good for other errors ?
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5 Grad-Div Stabilization

• answer by finite element error analysis

• different situations can be distinguished, see [1]

• standard situation leads to estimate∥∥∇ (u− uh)∥∥2

L2(Ω)
≤ inf

vh∈V h
div

(
4
∥∥∇ (u− vh)∥∥2

L2(Ω)
+ 2

µ

ν

∥∥∇ · vh∥∥2

L2(Ω)

)
+

2

µν
inf

qh∈Qh

∥∥p− qh∥∥2

L2(Ω)

◦ present at board, p. 223

◦ velocity error (bound) depends still on pressure

◦ dependency on viscosity is ν−1/2 instead of ν−1 without grad-div stabilization

[1] Jenkins, J., Linke, Rebholz; Adv. Comput. Math. 40, 491–516, 2014
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5 Grad-Div Stabilization

• concrete estimate for Taylor–Hood pair of finite element spaces

V h/Qh = Pk/Pk−1, k ≥ 2

∥∥∇ (u− uh)∥∥2

L2(Ω)
≤

(
4 +

2µ

ν

)
C2
V h
div
h2k ‖u‖2Hk+1(Ω)

+
2C2

Qh

µν
h2k ‖p‖2Hk(Ω)

◦ optimal choice of stabilization parameter by minimizing error bound

◦ depends on unknown norms of the solution

◦ depends on unknown constants for the best approximation error estimates

◦ if one assumes that all unknown quantities are ∼ 1 =⇒ µ ∼ 1

• similar considerations for MINI element: µ ∼ h
• optimal stabilization parameter for velocity error is not large
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5 Grad-Div Stabilization

• summary

◦ lot of experience in literature with grad-div stabilization and parameters that are

appropriate for good error bounds

− improves mass conservation somewhat, but usually not essential

− velocity error still depends on pressure

◦ grad-div term leads to matrix blockA11 A12 A13

AT12 A22 A23

AT13 AT23 A33

 instead of

A11 0 0

0 A11 0

0 0 A11


◦ grad-div stabilization is not the solution of the problem
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5 Conforming Divergence-Free Stable Finite Elements

• stability and mass conservation in finite element methods are conflicting

requirements

◦ let V h be fixed

◦ stability: discrete inf-sup condition

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

(∇ · vh, ph)

‖∇vh‖L2(Ω) ‖qh‖L2(Ω)

≥ βhis > 0

given if Qh is sufficiently small

◦ mass conservation:∇ · V h ⊆ Qh: take qh = ∇ · uh

0 = −
(
∇ · uh, qh

)
= −

∥∥∇ · uh∥∥2

L2(Ω)

given if Qh is sufficiently large

• ∇ · V h ⊂ L2(Ω)⇐⇒ normal components of finite element functions are

continuous

◦ note: not satisfied for Crouzeix–Raviart finite element
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5 Conforming Divergence-Free Stable Finite Elements

• analytical tool: smooth de Rham complex or Stokes complex in two dimensions

R → H2(Ω)
curl→ H1(Ω)

div→ L2(Ω) → 0

with

curl v(x) =

(−∂yv
∂xv

)
(x)

◦ sequence of spaces and maps

◦ de Rham complex is called exact if the range of each operator is the kernel of

the succeeding operator

− if w ∈ H2(Ω) is curl-free, then w is constant function

− if v ∈ H1(Ω) is divergence-free, then v = curl w for some w ∈ H2(Ω)

− the map div : H1(Ω)→ L2(Ω) is surjective, since the kernel of the last

operator is L2(Ω)
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5 Conforming Divergence-Free Stable Finite Elements

• finite element sub-complex

R → Wh curl→ V h
div→ Qh → 0

◦ if finite element sub-complex is exact

− V h/Qh satisfies the discrete inf-sup condition

− weakly divergence-free velocity fields are computed, since div V h = Qh

goal: construction of exact finite element sub-complex

• example
◦ consider barycentric refinement of triangles

◦ Hsieh–Clough–Tocher finite element [1]

◦ composite element of third order polynomials on

each fine mesh cell

◦ requirement: continuously differentiable =⇒ finite el-

ement space Wh belongs to H2(Ω)

[1] Ciarlet; The finite element method for elliptic problems, 1978, Chapter 6.1
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5 Conforming Divergence-Free Stable Finite Elements

• example (cont.)

◦ differentiation reduces the polynomial degree by one and also the regularity by

one

◦ =⇒ V h = curlWh ⊂ H1(Ω) and V h = P2 (on barycentric-refined mesh)

◦ =⇒Qh = div V h ⊂ L2(Ω) and Qh = P disc
1 (on barycentric-refined mesh)

◦ to show exactness: div : V h → Qh is a surjection

− finite-dimensional spaces: by counting the number of degrees of freedom

(somewhat longer)

◦ P2/P
disc
1 – Scott–Vogelius pair of spaces [1] on barycentric refined grids is

stable and computes weakly divergence-free solutions

[1] Scott, Vogelius; in Large-scale computations in fluid mechanics, Part 2, 221–244, 1985
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5 Conforming Divergence-Free Stable Finite Elements

• similar constructions can be started with other H2(Ω) conforming finite element

spaces

◦ lead to high polynomial spaces, of little importance in practice

• situation in two dimensions more or less clear

• 3d case much more challenging

◦ possible de Rham complex

R→ H2(Ω)
grad→ H1(curl; Ω)

curl→ H1(Ω)
div→ L2(Ω)→ 0

leads to velocity space with polynomials of degree 6

◦ Scott–Vogelius pair of spaces Pk/P disc
k−1 is stable on barycentric refined

meshes for k ≥ 3, [1]

[1] Zhang; Math. Comp. 74, 543–554, 2005
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5 Conforming Divergence-Free Stable Finite Elements

• summary

◦ Scott–Vogelius pair of spaces Pk/P disc
k−1, k ≥ d, so far only pair that is used

sometimes

◦ little hope to construct any other lower order pair
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5 H (div,Ω)-Conforming Finite Element Methods

• abandon conformity of finite element velocity space: V h 6⊂ V
• require∇ · V h ⊂ L2(Ω) =⇒ study H (div,Ω) conforming finite elements

◦ Raviart–Thomas elements, BDM elements

◦ normal component of functions is continuous across faces

• difficulty: consistency error in discretizing the viscous term (ν∇u,∇v)

◦ no convergence for using just∑
K∈T h

∫
K

ν∇uh : ∇vh dx

• proposals

◦ modify bilinear form

◦ modify H (div,Ω) to impose tangential continuity in a weak sense
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5 H (div,Ω)-Conforming Finite Element Methods

• modify bilinear form: possible proposal∑
K∈T h

∫
K

∇uh : ∇vh dx−
∑
E∈Eh

(∫
E

{{
ε(uh)

}}
E

[∣∣vh∣∣]
E
ds

+

∫
E

{{
vh
}}

E

[∣∣uh∣∣]
E
ds− σ

hE

∫
E

[∣∣uh∣∣]
E

[∣∣vh∣∣]
E
ds

)
◦ [|·|]E – jump across face

◦ {{·}}E – average on face

◦ {{ε·}}E – average of tangential component on face

◦ σ – parameter

◦ reminds on DG
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5 H (div,Ω)-Conforming Finite Element Methods

• modify H (div,Ω) to impose tangential continuity in a weak sense

◦ local space (2d)

V̂ h(K) = V h(K) + curl (bKS(K))

− bK – bubble function

− S(K) – auxiliary space

◦ example: V h(K) = RT0(K), S(K) = P1(K)

− global space possesses correct order of consistency error

− optimal error estimates can be proved

• summary

◦ use of H (div,Ω)-conforming methods interesting option

◦ so far no own experience
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5 Pressure-Robust FEM

• idea: satisfy discrete version of fundamental invariance principle by using

appropriate reconstructions of the test functions [1]

• finite element Stokes problem with reconstruction: Given f ∈ L2(Ω), find(
uh, ph

)
∈ V h ×Qh such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
=

(
f ,Πhvh

)
∀ vh ∈ V h,

−
(
∇ · uh, qh

)
= 0 ∀ qh ∈ Qh

with

Πh : V h → Rh (Rh – H (div,Ω)-conforming fe space)

[1] Linke; Comput. Methods Appl. Mech. Engrg. 268, 782–800, 2014
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5 Pressure-Robust FEM

• consider V h ×Qh = P bubble
2 × P disc

1

◦ discontinuous pressure of importance for easy construction

◦ Rh = RT1

◦ general requirements on Πh: projection and interpolation properties∫
K

(v −Πhv) dx = 0, ∀ v ∈ V,∀K ∈ T h∫
E

(v −Πhv) · nEqh ds = 0, ∀ v ∈ V,∀ qh ∈ P1(E)∥∥Πhv − v
∥∥
L2(K)

≤ ChmK |v|Hm(K) , m = 0, 1, 2

◦ cell-wise computation of Πhvh possible
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5 Pressure-Robust FEM

• V h ×Qh = P bubble
2 × P disc

1 (cont.)

◦ it holds for all K ∈ T h, v ∈ V , and qh ∈ Qh∫
K

∇ · vqh dx prod. rule
=

∫
K

∇ · (vqh) dx−
∫
K

∇qh · v dx

int. by parts
=

∫
∂K

qhv · nT ds−
∫
K

∇qh · v dx

prop. 1 & 2
=

∫
∂K

qh(Πhv) · nT ds−
∫
K

∇qh · (Πhv) dx

int. by parts
=

∫
K

∇ · (Πhv)qh dx

=⇒Qh projection of the divergence = Qh projection of the divergence of the

Πh projection
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5 Pressure-Robust FEM

• V h ×Qh = P bubble
2 × P disc

1 (cont.)

◦ fundamental invariance principle for modified discretization:

for all vh ∈ V hdiv (=⇒ consider only velocity)(
f +∇

(
PQhψ

)
,Πhvh

) int. by parts
=

(
f ,Πhvh

)
−
(
∇ ·
(
Πhvh

)
, PQhψ

)
div. prop

=
(
f ,Πhvh

)
−
(
∇ · vh, PQhψ

)
disc. div-free

=
(
f ,Πhvh

)
discrete counterpart of fundamental invariance principle satisfied:∇

(
PQhψ

)
possesses no impact on finite element velocity
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5 Pressure-Robust FEM

• finite element error analysis

◦ consistency error is introduced, is of optimal order

◦ estimate for velocity error∥∥∇(u− uh)
∥∥
L2(Ω)

≤ 2(1+CPF) inf
vh∈V h

∥∥∇(u− vh)
∥∥
L2(Ω)

+Ch2 |u|H3(Ω)

does not depend on pressure
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5 Pressure-Robust FEM

• Example 1

◦ Crouzeix–Raviart finite element with reconstruction in RT0
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5 Pressure-Robust FEM

• Example 2

◦ Crouzeix–Raviart finite element with reconstruction in RT0
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5 Pressure-Robust FEM

• summary

◦ extensions to almost arbitrary finite element pairs with discontinuous pressure

in [1] (simplicial and brick-shaped meshes)

◦ extension to finite element pairs with continuous pressure [2], becomes more

complicated

◦ extension to Navier–Stokes equations possible (and partly research in

progress)

− modifications of nonlinear convective term and of term with temporal

derivative necessary

− leads to modifications of the system matrix

◦ divergence-free finite element velocity in Rh by applying reconstruction

operator to uh

[1] Linke, Matthies, Tobiska; ESAIM: M2AN 50, 289–309, 2016

[2] Lederer, Linke, Merdon Schöberl; SIAM J. Numer. Anal. 55, 1291–1314, 2017
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5 Summary of this Part

• most standard pairs of finite element spaces do not preserve mass

• grad-div stabilization does not solve the problem

• only conforming divergence-free stable pair that is of some importance is

Scott–Vogelius pair

• H (div,Ω)-conforming finite element methods very interesting option, but no own

experience so far

• alternative approach: pressure robust methods with appropriate test functions by

reconstructions in H (div,Ω)-conforming finite element spaces

◦ several new developments in this direction, check the publications of A. Linke

(WIAS)

• survey of Part 5 in [1,2]

[1] J., Linke, Merdon, Neilan, Rebholz; SIAM Review 59, 492–544, 2017

[2] J.: Finite Element Methods for Incompressible Flow Problems 2016
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6. Stabilizing Dominant Convection for Oseen Problems
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6 Stabilizing Dominant Convection for Oseen Problems

• continuous equation

−ν∆u+ (b · ∇)u+ cu+∇p = f in Ω,

∇ · u = 0 in Ω

for simplicity: homogeneous Dirichlet boundary conditions

• difficulties:

◦ coupling of velocity and pres-

sure

◦ dominating convection

• properties

◦ linear

Carl Wilhelm Oseen (1879 – 1944)
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6 The Oseen Equations

• coefficients

◦ ν > 0

◦ b ∈W 1,∞(Ω),∇ · b = 0

◦ c ∈ L∞(Ω), c(x) ≥ c0 ≥ 0

• scaling of momentum equation:

◦ ‖b‖L∞(Ω) ∼ 1 if ν ≤ ‖b‖L∞(Ω)

• interesting cases

◦ ν of moderate size, c = 0

in numerical solution of steady-state Navier–Stokes equations

◦ ν of arbitrary size, c ∼ (∆t)−1

in numerical solution of time-dependent Navier–Stokes equations
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6 The Oseen Equations

• weak form

ν(∇u,∇v) + ((b · ∇)u+ cu,v)− (∇ · v, p) = 〈f ,v〉V ′,V ∀ v ∈ V,
−(∇ · u, q) = 0 ∀ q ∈ Q

• bilinear forms

a : V × V → R, a(u,v) = ν(∇u,∇v) + ((b · ∇)u+ cu,v),

b : V ×Q→ R, b(v, q) = −(∇ · v, q)

• existence and uniqueness of solution

◦ proof: board, p. 246

◦ essential condition

((b · ∇)v,v) = 0 ∀ v ∈ V
can be proved if b is divergence-free, board p. 245
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6 The Oseen Equations

• stability of solution

◦ dependency of bounds on coefficients is important

◦ depending on regularity of data, different estimates possible

− most general

ν

2
‖∇u‖2L2(Ω) +

∥∥∥c1/2u∥∥∥2

L2(Ω)
≤ 1

2ν
‖f‖2H−1(Ω)

− f ∈ L2(Ω) and c0 > 0

ν ‖∇u‖2L2(Ω) +
1

2

∥∥∥c1/2u∥∥∥2

L2(Ω)
≤ 1

2c0
‖f‖2L2(Ω)

◦ proof: board, p. 247

◦ estimates for pressure with inf-sup condition
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6 The Oseen Equations – Galerkin FEM

• Galerkin finite element method

a
(
uh,vh

)
+ b

(
vh, ph

)
=

(
f ,vh

)
∀ vh ∈ V h,

b
(
uh, qh

)
= 0 ∀ qh ∈ Qh

◦ homogeneous Dirichlet boundary conditions

◦ conforming, inf-sup stable finite element spaces

• existence, uniqueness, stability like for continuous problem
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6 The Oseen Equations – Galerkin FEM

• finite element error estimate for the L2(Ω) norm of the gradient of the velocity

◦ Ω ⊂ Rd, bounded, polyhedral, Lipschitz-continuous boundary

◦ regularity of coefficients like stated above

ν1/2
∥∥∇ (u− uh)∥∥

L2(Ω)
+
∥∥∥c1/2 (u− uh)∥∥∥

L2(Ω)

≤C
[(

1 +
1

βhis

)
Cos inf

vh∈V h

∥∥∇(u− vh)
∥∥
L2(Ω)

+
1

ν1/2
inf

qh∈Qh

∥∥p− qh∥∥
L2(Ω)

]
,

where

Cos = ν1/2 + ‖c‖1/2L∞(Ω) + ‖b‖L∞(Ω) min

{
1

ν1/2
,

1

c
1/2
0

}

◦ C does not depend on coefficients and triangulation, but on Ω

(Poincaré–Friedrichs inequality)
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6 The Oseen Equations – Galerkin FEM

• finite element error estimate for the L2(Ω) norm of the gradient of the velocity

(cont.)

◦ proof: principally same as for Stokes equations

◦ estimates for convective term∣∣∣((b · ∇)η,φh
)∣∣∣ =

∣∣∣−((b · ∇)φh,η
)∣∣∣ ≤ ‖b‖L∞(Ω)

∥∥∥∇φh∥∥∥
L2(Ω)

‖η‖L2(Ω)

≤ 2

ν
‖b‖2L∞(Ω) ‖η‖

2
L2(Ω) +

ν

8

∥∥∥∇φh∥∥∥2

L2(Ω)

or if c0 > 0∣∣∣((b · ∇)η,φh
)∣∣∣ ≤ ∥∥∥c−1/2b

∥∥∥
L∞(Ω)

‖∇η‖L2(Ω)

∥∥∥c1/2φh∥∥∥
L2(Ω)

≤
‖b‖2L∞(Ω) ‖∇η‖

2
L2(Ω)

c0
+

∥∥∥c1/2φh∥∥∥2

L2(Ω)

4
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6 The Oseen Equations – Galerkin FEM

• finite element error estimate for the L2(Ω) norm of the pressure

◦ same assumptions as for previous estimate

∥∥p− ph∥∥
L2(Ω)

≤ C

[
1

βhis

(
1 +

1

βhis

)
C2

os inf
vh∈V h

∥∥∇(u− vh)
∥∥
L2(Ω)

+

(
1 +

1

βhis
+

1

βhis

Cos

ν1/2

)
inf

qh∈Qh

∥∥p− qh∥∥
L2(Ω)

]

◦ proof: as for Stokes equations, with discrete inf-sup condition
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6 The Oseen Equations – Galerkin FEM

• finite element error estimates for conforming pairs of finite element spaces

◦ same assumptions on domain as for previous estimates

◦ solution sufficiently regular

◦ h – mesh width of triangulation

◦ spaces

− P bubble
k /Pk, k = 1 (MINI element),

− Pk/Pk−1, Qk/Qk−1, k ≥ 2 (Taylor–Hood element),

− P bubble
k /P disc

k−1, Qk/P disc
k−1, k ≥ 2

∥∥∇(u− uh)
∥∥
L2(Ω)

≤ C

ν1/2
hk
(
Cos ‖u‖Hk+1(Ω) +

1

ν1/2
‖p‖Hk(Ω)

)
,

∥∥p− ph∥∥
L2(Ω)

≤ Chk
(
C2

os ‖u‖Hk+1(Ω) +

(
1 +

Cos

ν1/2

)
‖p‖Hk(Ω)

)
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6 The Oseen Equations – Galerkin FEM

• Cos for ‖b‖L∞(Ω) = 1

10
−8
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−4

10
0

200
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800

1000
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0

10
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10
2
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3

10
4

νc
0

C
o
s

• error bounds not uniform for small ν or small time steps
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6 The Oseen Equations – Galerkin FEM

• analytical example which supports the error estimates

• prescribed solution

u =

(
u1

u2

)
=

(
∂yψ

−∂xψ

)
= 200

(
x2(1− x)2y(1− y)(1− 2y)

−x(1− x)(1− 2x)y2(1− y)2

)
p = π2(xy3 cos(2πx2y)− x2y sin(2πxy)) +

1

8

• b = u
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6 The Oseen Equations – Galerkin FEM

• Q2/Q1, convergence of errors for c = 0 and different values of ν
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• Q2/Q1, convergence of errors for c = 100 and different values of ν
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6 The Oseen Equations – Galerkin FEM

• Q2/Q1, convergence of errors for ν = 10−4 and different values of c
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• summary

◦ Galerkin discretization in some cases unstable
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6 The Oseen Equations – Residual-Based Stabilizations

• principal idea

• given: linear partial differential equation in strong form

Astrustr = f, f ∈ L2(Ω)

• Galerkin discretization

ah
(
uh, vh

)
=
(
f, vh

)
∀ vh ∈ V h

• needed: modification of strong operator Ahstr : V h → L2(Ω)

• residual

rh
(
uh
)

= Ahstru
h − f ∈ L2(Ω)

• generally rh
(
uh
)
6= 0
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6 The Oseen Equations – Residual-Based Stabilizations

• principal idea (cont.)

• consider optimization problem

arg min
uh∈V h

∥∥rh (uh)∥∥2

L2(Ω)
= arg min

uh∈V h

(
rh
(
uh
)
, rh

(
uh
))

• necessary condition for solution (board p. 259)(
rh
(
uh
)
, Ahstrv

h
)

= 0

• generalization δ(x) > 0

arg min
uh∈V h

∥∥∥δ1/2rh
(
uh
)∥∥∥2

L2(Ω)
= arg min

uh∈V h

(
δrh

(
uh
)
, rh

(
uh
))

with necessary condition (
δrh

(
uh
)
, Ahstrv

h
)

= 0
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6 The Oseen Equations – Residual-Based Stabilizations

• principal idea (cont.)

• minimizing residual alone: not good

K

◦ solid line – function with layer

◦ dashed line – optimal piece-

wise linear approximation

=⇒ residual large

• consider combination

ah
(
uh, vh

)
+
(
δrh

(
uh
)
, Ahstrv

h
)

=
(
f, vh

)
∀ vh ∈ V h

optimal choice of weighting function δ(x) by numerical analysis

• example: Oseen equations, board p. 261
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6 The Oseen Equations – Residual-Based Stabilizations

• SUPG/PSPG/grad-div stabilization

• find
(
uh, ph

)
∈ V h ×Qh such that

Aspg

((
uh, ph

)
,
(
vh, qh

))
= Lspg

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh,

with Aspg :
(
V × Q̃

)
×
(
V × Q̃

)
→ R

Aspg ((u, p) , (v, q))

= ν (∇u,∇v) + ((b · ∇)u+ cu,v)− (∇ · v, p) + (∇ · u, q)
+
∑
K∈T h

µK (∇ · u,∇ · v)K +
∑
E∈Eh

δE ([|p|]E , [|q|]E)
E

+
∑
K∈T h

(−ν∆u+ (b · ∇)u+ cu+∇p, δvK (b · ∇)v + δpK∇q)K

and Lspg :
(
V × Q̃

)
→ R

Lspg ((v, q)) = (f ,v) +
∑
K∈T h

(f , δvK (b · ∇)v + δpK∇q)K
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6 The Oseen Equations – Residual-Based Stabilizations

• SUPG/PSPG/grad-div stabilization (cont.)

• finite element error analysis in [1,2]

• δK = δvK = δpK for all K ∈ T h

δ = max
K∈T h

δK , µ = max
K∈T h

µK

• no saddle point problem because of∑
E∈Eh

δE
([∣∣ph∣∣]

E
,
[∣∣qh∣∣]

E

)
E

+
∑
K∈T h

δK
(
∇ph,∇qh

)
K

◦ analysis for elliptic partial differential equations applicable

◦ inf-sup stable spaces not necessary

◦ choice of stabilization parameters affected by choice of finite element spaces

[1] Tobiska, Verfürth; SINUM 33, 107–127, 1996

[2] Roos, Stynes, Tobiska; Robust numerical methods for singularly perturbed differential equations, Springer, 2008

Finite Element Methods for Incompressible Flow Problems · LNCC, Petropolis, February 25 – 28, 2019 · Page 154 (305)



6 The Oseen Equations – Residual-Based Stabilizations

• SUPG/PSPG/grad-div stabilization (cont.)

• finite element error analysis in [1,2]

• δK = δvK = δpK for all K ∈ T h

δ = max
K∈T h

δK , µ = max
K∈T h

µK

• no saddle point problem because of∑
E∈Eh

δE
([∣∣ph∣∣]

E
,
[∣∣qh∣∣]

E

)
E

+
∑
K∈T h

δK
(
∇ph,∇qh

)
K

◦ analysis for elliptic partial differential equations applicable

◦ inf-sup stable spaces not necessary

◦ choice of stabilization parameters affected by choice of finite element spaces

[1] Tobiska, Verfürth; SINUM 33, 107–127, 1996

[2] Roos, Stynes, Tobiska; Robust numerical methods for singularly perturbed differential equations, Springer, 2008

Finite Element Methods for Incompressible Flow Problems · LNCC, Petropolis, February 25 – 28, 2019 · Page 154 (305)



6 The Oseen Equations – Residual-Based Stabilizations

• properties

◦ consistency

Aspg

(
(u, p) ,

(
vh, qh

))
= Lspg

((
vh, qh

))
, ∀

(
vh, qh

)
∈ V h ×Qh

◦ Galerkin orthogonality

Aspg

((
u− uh, p− ph

)
,
(
vh, qh

))
= 0, ∀

(
vh, qh

)
∈ V h ×Qh
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6 The Oseen Equations – Residual-Based Stabilizations

• mesh-dependent norm

‖(v, q)‖spg =

{
ν ‖∇v‖2L2(Ω) +

∥∥∥c1/2v∥∥∥2

L2(Ω)
+
∑
K∈T h

µK ‖∇ · v‖2L2(K)

+
∑
E∈Eh

δE ‖[|q|]E‖
2
L2(E)

+
∑
K∈T h

δK ‖(b · ∇)v +∇q‖2L2(K)

}1/2

◦ proof: similar to PSPG method

◦ additional control on error of

− divergence

− pressure jumps

− streamline derivative + gradient of pressure

◦ norm with pressure: later
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6 The Oseen Equations – Residual-Based Stabilizations

• existence and uniqueness of a solution

◦ assumptions

µK ≥ 0, 0 < δK ≤ min

{
h2
K

3νC2
inv

,
1

3 ‖c‖L∞(K)

}

δE > 0 if Qh 6⊂ C(Ω)

◦ proof:

− coercivity, ∀
(
vh, qh

)
∈ V h ×Qh

Aspg

((
vh, qh

)
,
(
vh, qh

))
≥ 1

2

∥∥(vh, qh)∥∥2

spg

− =⇒ system matrix non-singular
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6 The Oseen Equations – Residual-Based Stabilizations

• stability

∥∥(uh, ph)∥∥2

spg
≤ 12

5
min

{
‖f‖2H−1(Ω)

ν
,
‖f‖2L2(Ω)

c0

}
+4

∑
K∈T h

δK ‖f‖2L2(K)

◦ proof: as usual

◦ estimate in stronger norm than for Galerkin finite element method

◦ estimate for pressure with inf-sup condition possible
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6 The Oseen Equations – Residual-Based Stabilizations

• norm for finite element error estimates

‖(v, q)‖spg,p =
(
‖(v, q)‖spg + w−2

pres ‖q‖2L2(Ω)

)1/2

with

wpres = max
{

1, ν−1/2, ‖c‖1/2L∞(Ω)

}
for the interesting cases of small ν and large c: small contribution of the pressure

• first step: inf-sup conditions for Aspg

inf
(vh,qh)∈V h×Qh

‖(uh,ph)‖
spg,p

=1

sup
(wh,rh)∈V h×Qh

‖(vh,qh)‖
spg,p

=1

Aspg

((
vh, qh

)
,
(
wh, rh

))
≥ βspg

◦ some conditions on stabilization parameters, e.g., δ0h2
K ≤ δK

◦ proof very technical

◦ βspg = O (δ0)
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6 The Oseen Equations – Residual-Based Stabilizations

• finite element error estimate∥∥(u− uh, p− ph)∥∥
spg,p

≤ C

[
hk

(
ν1/2 +

(
h+ δ1/2h

)
‖c‖1/2L∞(Ω) + δ1/2 ‖b‖1/2L∞(Ω) + δ1/2

+δ
−1/2
0 + γ

−1/2
0 + µ1/2

)
‖u‖Hk+1(Ω)

+hl

(
δ1/2 + hmin

{
ν−1/2, max

K∈T h

{
µ
−1/2
K

}}
+ hω−1

pres

+γ1/2
(
h+ h1/2

))
‖p‖Hl+1(Ω)

]
◦ k ≥ 1, l ≥ 0

◦ C independent of the coefficients of the problem

◦ proof: based on inf-sup condition Aspg
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6 The Oseen Equations – Residual-Based Stabilizations

• optimal asymptotics for stabilization parameters, ν < h, board p. 282

◦ inf-sup stable discretizations with k = l + 1

δ ∼ h2, µ ∼ 1 =⇒ order of error reduction: k

◦ equal-order discretizations with k = l ≥ 1

δ ∼ µ ∼ h =⇒ order of error reduction: k +
1

2

• optimal asymptotics for stabilization parameters, ν ≥ h
◦ inf-sup stable discretizations with k = l + 1

δ ∼ h2, µ ∼ 1 =⇒ order of convergence: k

◦ equal-order discretizations with k = l ≥ 1

δ ∼ h2, µ ∼ 1 =⇒ order of convergence: k
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6 The Oseen Equations – Residual-Based Stabilizations

• analytical example which supports the error estimates

• prescribed solution

u =

(
u1

u2

)
=

(
∂yψ

−∂xψ

)
= 200

(
x2(1− x)2y(1− y)(1− 2y)

−x(1− x)(1− 2x)y2(1− y)2

)
p = π2(xy3 cos(2πx2y)− x2y sin(2πxy)) +

1

8

• b = u
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6 The Oseen Equations – Residual-Based Stabilizations

• Q2/Q1 finite element

• stabilization parameters (based on numerical simulations from [1])

µK = 0.2, δK = 0.1h2
K

• convergence of errors for c = 0 and c = 100, different values of ν

0 1 2 3 4 5 6 7 8
levels

10-5

10-4

10-3

10-2

10-1

100

||(
u
,p
)−

(u
h
,p

h
)||

sp
g

h2

ν=1

ν=10−2

ν=10−4

ν=10−6

ν=10−8

0 1 2 3 4 5 6 7 8
levels

10-5

10-4

10-3

10-2

10-1

100

||(
u
,p
)−

(u
h
,p

h
)||

sp
g

h2

ν=1

ν=10−2

ν=10−4

ν=10−6

ν=10−8

[1] Matthies, Lube, Röhe, Comput. Methods Appl. Math. 9, 368 – 390, 2009
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6 The Oseen Equations – Residual-Based Stabilizations

• Q2/Q1, convergence of errors for ν = 10−4 and different values of c

0 1 2 3 4 5 6 7 8
levels

10-5

10-4

10-3

10-2

10-1

100

101

||(
u
,p
)−

(u
h
,p

h
)||

sp
g

h2

c=0

c=1

c=10

c=103

c=105
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6 The Oseen Equations – Residual-Based Stabilizations

• P1/P1 finite element

• stabilization parameters

δK =

{
0.5hK if ν < hK ,

0.5h2
K else,

µK = 0.5hK

• convergence of errors for c = 0 and c = 100, different values of ν

0 1 2 3 4 5 6 7 8 9
levels

10-3

10-2

10-1

100

101

||(
u
,p
)−

(u
h
,p

h
)||

sp
g

h

h3/2

ν=1

ν=10−2

ν=10−4

ν=10−6

ν=10−8

0 1 2 3 4 5 6 7 8 9
levels

10-3

10-2

10-1

100

101

||(
u
,p
)−

(u
h
,p

h
)||

sp
g

h

h3/2

ν=1

ν=10−2

ν=10−4

ν=10−6

ν=10−8
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6 The Oseen Equations – Residual-Based Stabilizations

• P1/P1, convergence of errors for ν = 10−4 and different values of c

0 1 2 3 4 5 6 7 8 9
levels

10-3

10-2

10-1

100

101

102

||(
u
,p
)−

(u
h
,p

h
)||

sp
g

h3/2

c=0

c=1

c=10

c=103

c=105
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6 The Oseen Equations – Residual-Based Stabilizations

• implementation: same approach as for Stokes equations

• grad-div term leads to matrix blockA11 A12 A13

AT12 A22 A23

AT13 AT23 A33

 instead of

A11 0 0

0 A11 0

0 0 A11


• PSPG term introduces pressure-pressure couplings

• SUPG term influences velocity-velocity coupling and the pressure (ansatz) -

velocity (test) coupling

• final system (
A D

B −C

)(
u

p

)
=

(
f

fp

)
much more matrix blocks to store than for Galerkin FEM

Finite Element Methods for Incompressible Flow Problems · LNCC, Petropolis, February 25 – 28, 2019 · Page 167 (305)



6 The Oseen Equations – Residual-Based Stabilizations

• summary and remarks

◦ errors
∥∥(u, p)− (uh, ph)

∥∥
spg,p

independent of ν

◦ versions without pressure couplings available

− only for inf-sup stable pairs of finite elements

− easier to implement than SUPG/PSPG/grad-div stabilization

◦ numerical analysis in [1,2,3]

• other stabilizations proposed in the literature

[1] Tobiska, Verfürth, SINUM 33, 107–127, 1996

[2] Lube, Rapin, M3AS 16, 949–966, 2006

[3] Matthies, Lube, Röhe, Comput. Methods Appl. Math. 9, 368–390, 2009
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7. The Stationary Navier–Stokes Equation
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7 The Stationary Navier–Stokes Equations

• continuous equation

−ν∆u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω

for simplicity: homogeneous Dirichlet boundary conditions

• difficulties:

◦ coupling of velocity and pressure

◦ dominating convection

◦ nonlinear
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7 The Stationary Navier–Stokes Equations

• different forms of the convective term

(u · ∇)u : convective form,

∇ ·
(
uuT

)
: divergence form,

(∇× u)× u : rotational form

◦ convective form and divergence form equivalent if∇ · u = 0 (apply product

rule to divergence form)

◦ convective form and rotational form

(∇× u)× u+
1

2
∇
(
uTu

)
= (u · ∇)u

definition of new pressure (Bernoulli pressure) in rotational form

pBern = p+
1

2
uTu
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7 The Stationary Navier–Stokes Equations

• different forms of the convective term (cont.)

◦ recent proposal [1]: EMAC (energy momentum and angular momentum

conserving)

2D (u)u+ (∇ · u)u

with new pressure (negative of Bernoulli pressure)

◦ derivation based on conservation of

− kinetic energy (ν = 0,f = 0)

− linear momentum (f with vanishing linear momentum)

− angular momentum (f with vanishing angular momentum)

− helicity (ν = 0)

− 2d enstrophy (ν = 0)

− vorticity (ν = 0)

◦ none of the other forms preserves all these quantities

◦ first numerical experience: often among best disc. of nonlinear term

[1] Charnyi, Heister, Olshanskii, Rebholz; J. Comput. Phys. 337, 289–308, 2017
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7 The Stationary Navier–Stokes Equations

• variational form of the steady-state Navier–Stokes equations: Find

(u, p) ∈ V ×Q such that

(ν∇u,∇v) + ((u · ∇)u,v)− (∇ · v, p) = (f ,v),

−(∇ · u, q) = 0

for all (v, q) ∈ V ×Q
• equivalent: Find (u, p) ∈ V ×Q such that

(ν∇u,∇v) + ((u · ∇)u,v)− (∇ · v, p) + (∇ · u, q) = (f ,v)

for all (v, q) ∈ V ×Q
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7 The Stationary Navier–Stokes Equations

• properties of convective term

◦ linear in each component (trilinear)

◦ u,v,w ∈ H1(Ω), product rule

((u · ∇)v,w) =
(
∇ ·
(
vuT

)
,w
)
− ((∇ · u)v,w)

◦ u,v,w ∈ H1(Ω), product rule

((u · ∇)v,w) = (u,∇ (v ·w))− ((u · ∇)w,v)
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7 The Stationary Navier–Stokes Equations

• convective terms in the variational formulation

◦ convective form

nconv(u,v,w) = ((u · ∇)v,w)

◦ divergence form

ndiv(u,v,w) = nconv(u,v,w) +
1

2
((∇ · u)v,w)

◦ rotational form

nrot(u,v,w) = ((∇× u)× v,w)

with momentum equation

(ν∇u,∇v) + nrot(u,u,v)− (∇ · v, pBern) = (f ,v) ∀ v ∈ V

◦ skew-symmetric form (for u weakly divergence-free, u · n = 0 on Γ)

nskew(u,v,w) =
1

2
(nconv(u,v,w)− nconv(u,w,v))
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7 The Stationary Navier–Stokes Equations

• further properties of convective term

• vanishing

◦ rotational, skew-symmetric, and divergence form

nrot(u,v,v) = nskew(u,v,v) = ndiv(u,v,v) = 0

◦ convective: if u weakly divergence-free and u · n = 0 on Γ

nconv(u,v,v) = 0

• estimates: u,v,w ∈ H1(Ω)

|nconv(u,v,w)| ≤ C ‖u‖H1(Ω) ‖∇v‖L2(Ω) ‖w‖H1(Ω) ,

|nskew(u,v,w)| ≤ C ‖u‖H1(Ω) ‖v‖H1(Ω) ‖w‖H1(Ω)

◦ proof: board, p. 309
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7 The Stationary Navier–Stokes Equations

• existence and uniqueness of a solution

◦ Ω ⊂ Rd, d ∈ {2, 3}, bounded domain with Lipschitz boundary

◦ f ∈ H−1(Ω)

◦ then: existence

• main ideas of the proof

◦ equivalent problem in the divergence-free subspace, only velocity

◦ consider problem in finite-dimensional spaces (Galerkin method)

◦ fixed point equation, existence of a solution of the finite-dimensional problems:

fixed point theorem of Brouwer

◦ dimension of the spaces→∞: show subsequence of the solutions tends to a

solution of the problem in the divergence-free subspace

◦ existence of the pressure: inf-sup condition

Finite Element Methods for Incompressible Flow Problems · LNCC, Petropolis, February 25 – 28, 2019 · Page 177 (305)



7 The Stationary Navier–Stokes Equations

• existence and uniqueness of a solution (cont.)

◦ ν sufficiently large, i.e.,

‖f‖H−1(Ω) sup
u,v,w∈V

((u · ∇)v,w)

‖∇u‖L2(Ω) ‖∇v‖L2(Ω) ‖∇w‖L2(Ω)

< ν2

◦ then: uniqueness

• main idea of the proof

◦ construct a contraction, apply Banach’s fixed point theorem

◦ use result of existence and uniqueness of solution for Oseen equations

• numerical simulations

◦ case of unique solution is of interest

◦ steady-state solutions unstable in non-unique case, solve time-dependent

problem
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7 The Stationary Navier–Stokes Equations

• stability

‖∇u‖L2(Ω) ≤ 1

ν
‖f‖H−1(Ω) ,

‖p‖L2(Ω) ≤ 1

βis

(
2 ‖f‖H−1(Ω) +

C

ν2
‖f‖2H−1(Ω)

)
◦ proof: as usual, using

n(u,u,u) = 0
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• Galerkin finite element method

ν
(
∇uh,∇vh

)
+ n

(
uh,uh,vh

)
−
(
∇ · vh, ph

)
=

(
f ,vh

)
∀ vh ∈ V h,

−
(
∇ · uh, qh

)
= 0 ∀ qh ∈ Qh

• inf-sup stable pair of finite element spaces

• finite element error analysis for nskew(·, ·, ·)

nskew

(
uh,vh,vh

)
=

1

2

(
nconv

(
uh,vh,vh

)
− nconv

(
uh,vh,vh

))
= 0

note that in general uh 6∈ Vdiv =⇒

nconv

(
uh,vh,vh

)
6= 0

• same as for continuous problem:

◦ existence, uniqueness

◦ stability
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• Finite element error estimate for the L2(Ω) norm of the gradient of the velocity

◦ Ω ⊂ Rd bounded Lipschitz domain with polyhedral boundary

◦ ν−2 ‖f‖H−1(Ω) be sufficiently small such that unique solution

◦ inf-sup stable finite element spaces V h ×Qh∥∥∇(u− uh)
∥∥
L2(Ω)

≤ C

((
1 +

1

ν2
‖f‖H−1(Ω)

)(
1 +

1

βhis

)
inf

vh∈V h

∥∥∇ (u− vh)∥∥
L2(Ω)

+
1

ν
inf

qh∈Qh

∥∥p− qh∥∥
L2(Ω)

)
◦ proof: main ideas and treatment of nonlinear term: board, p. 320
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• Finite element error estimate for the L2(Ω) norm of the pressure∥∥p− ph∥∥
L2(Ω)

≤ C
ν

βhis

((
1 +

1

ν2
‖f‖H−1(Ω)

)2(
1 +

1

βhis

)
inf

vh∈V h

∥∥∇ (u− vh)∥∥
L2(Ω)

+C
ν

βhis

(
1 +

1

ν2
‖f‖H−1(Ω)

)
inf

qh∈Qh

∥∥p− qh∥∥
L2(Ω)

)

• analytical results can be supported numerically by analytical test examples
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• Example: steady-state flow around a cylinder at Re = 20

◦ domain

2.2 m

Γcyl

0.1 m

0.15 m

0.41 mΓout

0.
15

m

Γin

◦ velocity

◦ pressure
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• Example: steady-state flow around a cylinder at Re = 20

◦ at the cylinder
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• important: drag and lift coefficient at the cylinder

cdrag =
2

ρdU2
mean

∫
Γcyl

(
µ
∂vt
∂n

ny − Pnx
)
ds,

clift = − 2

ρdU2
mean

∫
Γcyl

(
µ
∂vt
∂n

nx + Pny

)
ds

• reformulation with volume integrals possible, long but elementary derivation, e.g.,

cdrag = − 2U2

dU2
mean

(
(ν∇u,∇wd) + n(u,u,wd)− (∇ ·wd, p)− (f ,wd)

)
for any functionwd ∈ H1(Ω) withwd = 0 on Γ \ Γcyl andwd|Γcyl

= (1, 0)T
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• reference values

◦ [1] : compiled from simulations of different groups

cdrag,ref ∈ [5.57, 5.59], clift,ref ∈ [0.104, 0.110]

◦ [2] : do-nothing conditions at outlet

cdrag,ref = 5.57953523384, clift,ref = 0.010618948146

◦ [3] : Dirichlet conditions at outlet

cdrag,ref = 5.57953523384, clift,ref = 0.010618937712

[1] Schäfer, Turek; Notes on Numerical Fluid Mechanics 52, 547–566, 1996

[2] Nabh; PhD thesis, Heidelberg, 1998

[3] J., Matthies; IJNMF 37, 885–903, 2001
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• initial grids

• patch for test function in computation of coefficients, Q2

Γcyl
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• convective form of convective term

• do-nothing boundary conditions

• convergence of drag coefficient
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• convergence of lift coefficient
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• different forms of the convective term

◦ structure of matrix for convective, divergence, and skew-symmetric form

A =

A11 0 0

0 A11 0

0 0 A11


◦ structure of matrix for rotational formA11 A12 A13

A21 A22 A23

A31 A32 A33


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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• different forms of the convective term, P2/P1

• rotational form

◦ reconstructed pressure has boundary layers, inaccurate results
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• schemes for solving the nonlinearity

• fixed point iteration(
u(m+1)

p(m+1)

)
=

(
u(m)

p(m)

)
− ϑN−1

lin

((
(f ,v)

0

)
−N

(
u(m);u(m), p(m)

))
with

N (w;u, p) =

(
a(u,v) + n(w,u,v) + b(v, p)

b(u, q)

)
N lin – linear operator

ϑ ∈ (0, 1] – damping factor
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• fixed point iteration

◦ linear system to be solved

N lin

(
δu(m+1)

δp(m+1)

)
=

((
(f ,v)

0

)
−N

(
u(m);u(m), p(m)

))
◦ setting (

δu(m+1)

δp(m+1)

)
=

(
ũ(m+1) − u(m)

p̃(m+1) − p(m)

)
,

then

N lin

(
ũ(m+1)

p̃(m+1)

)
=

((
(f ,v)

0

)
−N

(
u(m);u(m), p(m)

))
+N lin

(
u(m)

p(m)

)
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• iteration with Stokes equations

N lin = N
(
0; ũ(m+1), p̃(m+1)

)
• then(

a(ũ(m+1),v) + b(v, p̃(m+1))

b(ũ(m+1), q)

)

=

(
(f ,v)− a(u(m),v)− n(u(m),u(m),v)− b(v, p̃(m))

−b(ũ(m), q)

)

+

(
a(u(m),v) + b(v, p̃(m))

b(ũ(m), q)

)
=

(
(f ,v)− n(u(m),u(m),v)

0

)
◦ converges only if ν is sufficiently large

◦ not recommended
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• iteration with Oseen-type equations, Picard iteration

N lin = N
(
u(m); ũ(m+1), p̃(m+1)

)
• then (

a(ũ(m+1),v) + n(u(m), ũ(m+1),v) + b(v, p̃(m+1))

b(ũ(m+1), q)

)

=

(
(f ,v)− a(u(m),v)− n(u(m),u(m),v)− b(v, p̃(m))

−b(u(m), q)

)
+

(
a(u(m),v) + n(u(m),u(m),v) + b(v, p̃(m))

b(u(m), q)

)
=

(
(f ,v)

0

)
• widely used
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7 The Stationary Navier–Stokes Equations – Galerkin FEM
• Newton’s method

• linear operator is derivative of the nonlinear operator at the current position

N lin = DN

(
u(m)

p(m)

)
◦ with Gâteaux derivative at (u, p)T

DN

(
u

p

)
= lim

ε→0

N(u+ εφ;u+ εφ, p+ εψ)−N(u;u, p)

ε

= N(φ;u, p) +N(u;φ, p) +N(u,u, ψ)

◦ inserting and collecting terms(
a(ũ(m+1),v) + n(u(m), ũ(m+1),v) + n(ũ(m+1),u(m),v) + b(v, p̃(m+1))

b(ũ(m+1), q)

)

=

(
(f ,v) + n(u(m),u(m),v)

0

)
◦ analytical properties of term n(ũ(m+1),u(m),v) unclear
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• implementation

◦ same principal approach as for Stokes and Oseen equations

◦ inf-sup stable finite elements lead to linear saddle point problems in fixed point

iteration (
A BT

B 0

)(
u

p

)
=

(
f

0

)

◦ convective form of convective term

− Picard iteration

A =

 A11 0 0

0 A11 0

0 0 A11


− Newton iteration

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• example: Picard vs. Newton

◦ analytical solution

◦ Q2/P
disc
1

◦ exact solution of linear systems vs inexact solution

− inexact: reduce Euclidean norm of residual by factor 10, at most 10

iterations
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• number of iterations for solving the nonlinear problem

◦ ‘not conv.’: solution was not obtained within 100 iterations

Picard iteration Newton’s method
ν level/lin. solver inexact exact inexact exact

1/100 2 14 26 8 5
3 15 14 7 5
4 14 14 7 5
5 13 13 7 5
6 13 13 7 5

1/500 2 39 not conv. not conv. not conv.
3 32 32 not conv. not conv.
4 30 29 35 8
5 29 28 52 8
6 28 27 not conv. 8

1/1000 2 not conv. not conv. not conv. not conv.
3 36 57 not conv. not conv.
4 35 33 not conv. not conv.
5 35 31 not conv. not conv.
6 33 30 not conv. not conv.
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• Picard method

◦ larger convergence radius

◦ more robust

• Newton’s method

◦ faster in case of convergence and exact solution of linear systems

◦ properties of term n(ũ(m+1),u(m),v) not clear
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7 The Stationary Navier–Stokes Equations – Galerkin FEM

• residual-based (and other) stabilizations possible

◦ better: solve time-dependent problem
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7 Solvers for Linear Saddle Point Problems

• discretization and linearization leads to algebraic linear system of equations

A x =

(
A D

B −C

)(
u

p

)
=

(
f

fp

)
= y,

with

A ∈ RdNv×dNv , D ∈ RdNv×Np , B ∈ RNp×dNv , C ∈ RNp×Np ,

u, f ∈ RdNv , p, fp ∈ RNp ,

such that

A ∈ R(dNv+Np)×(dNv+Np), x, y ∈ RdNv+Np

• sparse matrices

• efficiency of simulations depends strongly on efficiency of solution of these

systems
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7 Solvers for Linear Saddle Point Problems

• sparse direct solvers

◦ MUMPS, pardiso, UMFPACK

◦ black box, easy to use

◦ improved considerably in the last 20 years

• iterative solvers

◦ (flexible) GMRES(restart), BiCGStab, . . .

◦ generally not necessary to solve linear systems very accurately

− common strategy: reduce Euclidean norm of residual vector by factor 10

◦ need preconditioner
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7 Solvers for Linear Saddle Point Problems

• multigrid preconditioner

◦ needs hierarchy of grids

◦ grid transfer operators (restriction, prolongation)

◦ smoother (iterative method for damping high frequency error components)

◦ coarse grid solver, e.g., direct solver
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7 Solvers for Linear Saddle Point Problems

• multigrid preconditioner (cont.)

◦ smoother essentially for efficiency

− for saddle point problems only block Gauss–Seidel smoothers efficient

(Vanka smoothers) [1], multiplicative Vanka smoother

− coupled treatment of velocity and pressure

◦ multigrid methods take time for implementation

◦ need some effort for parallelization

[1] Vanka; J. Comput. Phys. 65, 138–158, 1986
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7 Multiplicative Vanka Smoother

• decomposition of velocity d.o.f.Vh and pressure d.o.f.Qh

Vh = ∪Jj=1Vhj , Qh = ∪Jj=1Qhj

• Aj matrix blockA which is connected toWhj = Vhj ∪Qhj

Aj =

(
Aj Bj
Cj 0

)
∈ Rdim(Whj)×dim(Whj)

• one application of multiplicative Vanka smoother: for j = 1, . . . , J(
u

p

)
j

:=

(
u

p

)
j

+A−1
j

((
f

g

)
−A

(
u

p

))
j

• strategy:

◦ chooseQhj
◦ Vhj all velocity d.o.f. which are connected to pressure d.o.f. inQhj
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7 Mesh Cell Oriented Vanka Smoother

• discontinuous pressure approximation

• Whj : all d.o.f. which are connected to one mesh cell

• J : number of mesh cells
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7 Pressure Node Oriented Vanka Smoother

• continuous pressure approximation

• dimQhj = 1 for all j

• J : number of pressure d.o.f.
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7 Size of Local Systems

• mesh cell oriented Vanka smoother

2d 3d

velo pressure total velo pressure total

Qnc1 /Q0 (R/T) 4 1 9 6 1 19

Q2/P
disc
1 9 3 21 27 4 85

Q3/P
disc
2 16 6 38 64 10 202

Pnc1 /P0 (C/R) 3 1 7 4 1 13

• same size for all mesh cells
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7 Size of Local Systems (cont.)

• pressure node oriented Vanka smoother

2d 3d

velo pressure total velo pressure total

Q2/Q1 25 1 51 125 1 376

Q3/Q2 49 1 99 343 1 1030

P2/P1 19 1 39 65 1 196

P3/P2 37 1 75 175 1 526
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7 Solvers for Linear Saddle Point Problems

• smoothers that treat velocity and pressure in decoupled way

◦ Least Squares Commutator (LSC) preconditioner [1,2]

◦ augmented Lagrangian-based preconditioner [3]

• LSC preconditioner

◦ starting point (
A BT

B 0

)
=

(
I 0

BA−1 I

)(
A BT

0 S

)
with Schur complement

S = −BA−1BT

[1] Elman, Howle, Shadid, Shuttleworth, Tuminaro; SIAM J. Sci. Comput. 27, 1651–1668, 2006

[2] Elman, Silvester, Wathen; Oxford University Press, 2014

[3] Benzi, Wang; SIAM J. Sci. Comput. 33, 2761–2784, 2011
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7 Solvers for Linear Saddle Point Problems

• LSC preconditioner

◦ equivalent to (
A BT

B 0

)(
A BT

0 S

)−1

=

(
I 0

BA−1 I

)
◦ =⇒: good right preconditioner (

A BT

0 S

)−1

◦ approximation of Schur complement based on (commutation) ansatz

A
(
D−1

lscB
T
)
≈ BTApres ⇐⇒ D−1

lscB
TA−1

pres ≈ A−1BT

Dlsc – scaling matrix, diagonal matrix, positive diagonal entries

Apres – discretization of convection-diffusion operator for pressure

=⇒ S = −BA−1BT ≈ −BD−1
lscB

TA−1
pres = Slsc
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7 Solvers for Linear Saddle Point Problems

• LSC preconditioner

◦ determine Apres by minimizing commutation error in least squares sense

◦ approximation

Slsc = −BD−1
lscB

T
(
BD−1

lscAD
−1
lscB

T
)−1

BD−1
lscB

T

◦ problem for preconditioner(
A BT

0 Slsc

)(
v

q

)
=

(
bv
bq

)
◦ requires A−1 and inverse of Schur complement approximation

S−1
lsc = −

(
BD−1

lscB
T
)−1 (

BD−1
lscAD

−1
lscB

T
) (
BD−1

lscB
T
)−1

−
(
BD−1

lscB
T
)−1

(scaled) Poisson problem

− our implementation: compute BD−1
lscB

T explicitly =⇒ sparse direct solver

can be applied
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7 Solvers for Linear Saddle Point Problems

• numerical studies [1]

◦ 2d stationary Navier–Stokes equations, flow around a cylinder

105 106

# dof

101

102

103

104

co
m

p
u
ti

n
g
 t

im
e
 i
n
 s

e
c.

P2/P1

UMFPACK, slope 1.64
FGMRES + MG(nodal), slope 0.70
FGMRES + MDML(nodal), slope 0.84
FGMRES + MG(patch), slope 0.98
FGMRES + MDML(patch), slope 1.00
FGMRES + LSC(dir), slope 1.74
FGMRES + boundary-corr. LSC(dir), slope 1.74

105 106

# dof

101

102

103

104

co
m

p
u
ti

n
g
 t

im
e
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n
 s

e
c.

Q2 /P
disc
1

UMFPACK, slope 1.67
FGMRES + MG(cell), slope 0.90
FGMRES + MDML(cell), slope 0.98
FGMRES + LSC(dir), slope 1.75
FGMRES + boundary-corr. LSC(dir), slope 1.73
FGMRES + LSC(ite), slope 1.78
FGMRES + boundary-corr. LSC(ite), slope 1.76

[1] Ahmed, Bartsch, J., Wilbrandt; CMAME 331, 492–513, 2018
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7 Solvers for Linear Saddle Point Problems

• numerical studies [1]

◦ 3d stationary Navier–Stokes equations, flow around a cylinder
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FGMRES + MDML(nodal), slope 0.85
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FGMRES + MDML(patch), slope 1.00
FGMRES + boundary-corrected LSC, slope 2.57
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UMFPACK, slope 2.63
FGMRES + MG(cell), slope 0.77
FGMRES + MDML(cell), slope 0.89
FGMRES + boundary-corrected LSC, slope 2.03

[1] Ahmed, Bartsch, J., Wilbrandt; CMAME 331, 492–513, 2018
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7 Solvers for Linear Saddle Point Problems

• numerical experience [1]

◦ stationary Navier–Stokes equations

− matrix A dominated by convective term

− behavior depends somewhat on chosen pair of finite element spaces

− sparse direct solver and LSC efficient only on coarse grids, in particular in

3d

− on finer grids some multigrid preconditioner best

− LSC preconditioner with approximate solution of system with A does not

work

• numerical experience for time-dependent Navier–Stokes equations in Chapter 9

[1] Ahmed, Bartsch, J., Wilbrandt; CMAME 331, 492–513, 2018
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8. The Time-Dependent Navier–Stokes Equations – Analysis
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8 The Time-Dependent Navier–Stokes Equations

• continuous equation

∂tu− ν∆u+ (u · ∇)u+∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω,

u(0, ·) = u0 in Ω,

with

u = 0 in (0, T ]× Γ
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8 The Time-Dependent Navier–Stokes Equations

• weak or variational formulation obtained by

◦ multiply Navier–Stokes equations with a suitable test function ϕ

◦ integrate on (0, T )× Ω

◦ apply integration by parts

• weak or variational formulation

◦ let f ∈ L2 (0, T ;V ′) and u0 ∈ Hdiv(Ω)

◦ u is called weak or variational solution of the Navier–Stokes equations if

− u satisfies∫ T

0

[
− (u, ∂tφ) + ν (∇u,∇φ) + ((u · ∇)u,φ)

]
(τ) dτ

=

∫ T

0

〈f ,φ〉V ′,V (τ) dτ + (u0,φ (0, ·)) ∀ φ ∈ C∞0,div ([0, T )× Ω) .

− u has the following regularity

u ∈ L2 (0, T ;Vdiv) ∩ L∞ (0, T ;Hdiv(Ω))
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8 The Time-Dependent Navier–Stokes Equations

• properties

◦ no time derivative with respect to u

◦ no second order space derivative with respect to u

◦ the pressure vanished because∫
Ω

∇p ·ϕ dx = (∇p,ϕ) =

∫
Γ

p(s)ϕ(s)︸︷︷︸
=0

·n(s) ds− (p,∇ ·ϕ︸ ︷︷ ︸
=0

) = 0
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8 The Time-Dependent Navier–Stokes Equations

• mathematical analysis

◦ 2d: existence and uniqueness of weak solution, Leray (1933), Hopf (1951)

◦ 3d: existence of weak solution, Leray (1933), Hopf (1951)

• Jean Leray (1906 – 1998) Eberhard Hopf (1902 – 1983)

Uniqueness of weak solution of 3d Navier–Stokes equations is open problem !
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8 Sketch of the Proof (Hopf (1951))

• principal idea of all existence proofs

◦ consider simpler problem than Navier–Stokes equations

− simpler problem has parameter such that in some limit Navier–Stokes

equations are obtained

◦ show existence and uniqueness of a solution of simpler problem

◦ show that in a limit a subsequence of these solutions converges to a weak

solution of the Navier–Stokes equations

• Hopf (1951): simpler problems are Navier–Stokes equations in finite-dimensional

subspace (Galerkin method)
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8 Sketch of the Proof (Hopf (1951))

• starting point: take L2(Ω) orthonormal basis {vl}∞l=1 of C∞0,div (Ω)

• finite-dimensional space

V ndiv = span{vnl }nl=1 ⊂ C∞0,div (Ω)

• equation in this space: Find un ∈ V ndiv such that

(∂tu
n,vn) + (ν∇un,∇vn) + n (un,un,vn) = 〈f ,vn〉V ′,V ∀ vn ∈ V ndiv
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8 Sketch of the Proof (Hopf (1951))

• ansatz for solution

un (t,x) =

n∑
l=1

αnl (t)vnl (x)

• system of ordinary differential equations

dαnl
dt

+

n∑
j=1

aljα
n
j +

n∑
j,k=1

nljkα
n
j α

n
k = fl, l = 1, . . . , n,

αnl (0) = u0l, , l = 1, . . . , n

with

alj =
(
ν∇vnj ,∇vnl

)
, nljk =

((
vnj · ∇

)
vnk ,v

n
l

)
= n

(
vnj ,v

n
k ,v

n
l

)
,

fl = 〈f ,vnl 〉V ′,V , u0l = (u0,v
n
l )

• existence of unique solution: Theorem of Carathéodory (generalization of

Theorem of Peano)
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8 Sketch of the Proof (Hopf (1951))

• prove weak convergence of subsequence of solution in the spaces present in

definition of weak solution

• prove that nonlinear term of finite-dimensional problems converges to nonlinear

term of Navier–Stokes equations (lengthy and technical)

• prove that limit of subsequence satisfies initial condition of Navier–Stokes

equations

existence of a weak solution

• some consequences

◦ regularity for temporal derivative

∂tu ∈
{
L2 (0, T ;V ′) if d = 2,

L4/3 (0, T ;V ′) if d = 3
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8 Analysis for Continuous Problem

• some consequences

◦ energy inequality

‖u(t)‖2L2(Ω) + 2ν

∫ t

0

‖∇u (τ)‖2L2(Ω) dτ

≤ ‖u (0)‖2L2(Ω) + 2

∫ t

0

〈f ,u〉V ′V (τ) dτ

− 2d: even energy equality

◦ stability for all times t

‖u(t)‖2L2(Ω)+ν ‖∇u‖
2
L2(0,t;L2(Ω)) ≤ ‖u(0)‖2L2(Ω)+

1

ν
‖f‖2L2(0,t;H−1(Ω))
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8 Analysis for Continuous Problem

• uniqueness of a weak solution

◦ 2d: by Sobolev imbedding

u ∈ L4
(
0, T ;L4 (Ω)

)
− is suffient for uniqueness of weak solution

◦ 3d: with stronger regularity assumption, e.g., u ∈ L8
(
0, T ;L4 (Ω)

)
◦ 3d: generalization [1]

u ∈ Ls (0, T ;Lq (Ω)) with s > 2, q > 3,
2

s
+

3

q
= 1

◦ 3d: question is open

[1] Serrin; University of Wisconsin Press, Madison 69–98, 1963
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8 Finite Element Analysis, Time-Continuous Problem

• weak formulation: Find u : (0, T ]→ V , p : (0, T ]→ Q such that

(∂tu,v) + (ν∇u,∇v) + n (u,u,v)− (∇ · v, p) + (∇ · u, q) = 〈f ,v〉V ′,V

for all (v, q) ∈ V ×Q and u(0,x) = u0(x) ∈ Hdiv(Ω)

• V h ⊂ V , Qh ⊂ Q

• time-continuous finite element problem: Find uh : (0, T ]→ V h,

ph : (0, T ]→ Qh such that(
∂tu

h,vh
)

+ (ν∇uh,∇vh) + n
(
uh,uh,vh

)
−
(
∇ · vh, ph

)
+
(
∇ · uh, qh

)
= 〈f ,vh〉V ′,V

for all (vh, qh) ∈ V h ×Qh and uh(0,x) = uh0 (x) ∈ V h, approximation of

u0(x)

◦ Galerkin discretization

◦ skew-symmetric form of the convective term
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8 Finite Element Analysis, Time-Continuous Problem

• existence, uniqueness, stability of finite element solution

◦ same tools as for Galerkin method in proof from Hopf

• assumption for error analysis

◦ data

f ∈ L2 (0, T ;V ′) , u0 ∈ Hdiv(Ω), uh0 ∈ V hdiv

◦ solution of continuous problem

∂tu ∈ L2 (0, T ;V ′) , ∇u ∈ L4
(
0, T ;L2 (Ω)

)
, p ∈ L2

(
0, T ;L2 (Ω)

)
=⇒ uniqueness of weak solution
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8 Finite Element Analysis, Time-Continuous Problem

• steps of the proof

1. derivation of an error equation and splitting of the error

◦ same as usual: subtract finite element problem from continuous problem

2. estimate all terms on the right-hand side of the error equation

◦ same techniques as for Stokes and steady-state Navier–Stokes equations

3. application of Gronwall’s lemma

4. application of the triangle inequality

◦ same as usual
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8 Finite Element Analysis, Time-Continuous Problem

• Gronwall’s lemma (in differential form):

Let T ∈ R+ ∪∞, f ∈W 1,1 (0, T ), and g, λ ∈ L1 (0, T ). Then

f ′ (t) ≤ g (t) + λ (t) f (t) a.e. in [0, T ]

implies for almost all t ∈ [0, T ]

f (t) ≤ exp

(∫ t

0

λ (τ) dτ

)
f (0) +

∫ t

0

exp

(∫ t

s

λ (τ) dτ

)
g (s) ds.

• result of step 2: for all qh ∈ Qh

1

2

d

dt

∥∥∥φh∥∥∥2

L2(Ω)
+

3ν

8

∥∥∥∇φh∥∥∥2

L2(Ω)
≤ 2

ν
‖∂tη‖2V ′ +

2

ν

∥∥p− qh∥∥2

L2(Ω)

+
C

ν

(
‖η‖L2(Ω) ‖∇η‖L2(Ω) ‖∇u‖

2
L2(Ω) +

∥∥uh∥∥
L2(Ω)

∥∥∇uh∥∥
L2(Ω)

‖∇η‖2L2(Ω)

)
+
C

ν3
‖∇u‖4L2(Ω)

∥∥∥φh∥∥∥2

L2(Ω)
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8 Finite Element Analysis, Time-Continuous Problem

• integrate inequality in time

• assumptions and stability estimates show, e.g.,∫ t

0

‖η‖L2(Ω) ‖∇η‖L2(Ω) ‖∇u‖
2
L2(Ω) dτ <∞

and ∫ t

0

∥∥uh∥∥
L2(Ω)

∥∥∇uh∥∥
L2(Ω)

‖∇η‖2L2(Ω) dτ <∞

=⇒ assumptions of Gronwall’s lemma satisfied
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8 Finite Element Analysis, Time-Continuous Problem

• final error estimate: IhStu(t) – appropriate projection∥∥(u− uh) (t)
∥∥2

L2(Ω)
+ ν

∥∥∇ (u− uh)∥∥2

L2(0,t;L2(Ω))

≤ C

{∥∥(u− IhStu
)

(t)
∥∥2

L2(Ω)
+ ν

∥∥∇ (u− IhStu
)∥∥2

L2(0,t;L2(Ω))

+exp

(
C

ν3
‖∇u‖4L4(0,t;L2(Ω))

)[∥∥uh0 − IhStu(0)
∥∥2

L2(Ω)

+
1

ν

(∥∥∂t (u− IhStu
)∥∥2

L2(0,t;V ′)

+
∥∥∇ (u− IhStu

)∥∥2

L4(0,t;L2(Ω))
‖∇u‖2L4(0,t;L2(Ω))

+ inf
qh∈L2(0,t;Qh)

∥∥p− qh∥∥2

L2(0,t;L2(Ω))

)
+

1

ν3/2

(∥∥uh0∥∥2

L2(Ω)
+

1

ν
‖f‖2L2(0,t;V ′)

)∥∥∇ (u− IhStu
)∥∥2

L4(0,t;L2(Ω))

]}
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8 Finite Element Analysis, Time-Continuous Problem

• final error estimate

◦ factor very (!) large (unrealistic)

exp

(
C

ν3
‖∇u‖4L4(0,t;L2(Ω))

)
◦ useless error bound for practice

◦ modifications with other (higher) regularity assumptions on solution possible

− exponential depends only on ν−1

◦ for weakly divergence-free pairs of spaces

− simplest form of convective term can be used in analysis

nconv(u,v,w) = ((u · ∇)v,w)

− exponential does not depend on inverse powers of ν

• estimate for pressure: lengthy and very technical

• survey of open problems in [1]

[1] J., Knobloch, Novo; Comput. Vis. Sci. 19, 47–63, 2018
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8 Finite Element Analysis, Time-Continuous Problem

• example with analytical solution (Beltrami flow)

◦ Q2/Q1

◦ very small time step (temporal error negligible)
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8 Finite Element Analysis, Time-Continuous Problem

• example with analytical solution (Beltrami flow): convergence of velocity errors

2 3 4 5
level

10-4

10-3

10-2

10-1
||(
u
−u

h
)(
T
)||

L
2 (
Ω
)

h3

ν=1

ν=10−1

ν=10−2

ν=10−3

2 3 4 5
level

10-3

10-2

10-1

||∇
(u
∇u

h
)||

L
2 (
0,
T
;L

2 (
Ω
))

h2

ν=1

ν=10∇1

ν=10∇2

ν=10∇3

2 3 4 5
level

10-3

10-2

10-1

(||
(u
−u

h
)(
T
)||

2 L
2 (
Ω
)
+
ν||
∇(

u
−u

h
)||

2 L
2 (
0,
T
;L

2 (
Ω
))
))
1/
2

h2

ν=1

ν=10−1

ν=10−2

ν=10−3
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9. The Time-Dependent Navier–Stokes Equations – Schemes
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9 The Time-Dependent Navier–Stokes Equations

• implicit θ-schemes as semi discretization in time

◦ ∆tn+1 = tn+1 − tn
◦ subscript k for quantities at time level k

uk+1 + θ1∆tn+1[−ν∆uk+1 + (uk+1 · ∇)uk+1] + ∆tk+1∇pk+1

= uk − θ2∆tn+1[−ν∇ ·∆uk + (uk · ∇)uk] + θ3∆tn+1fk

+θ4∆tn+1fk+1,

∇ · uk+1 = 0,

• one-step θ-schemes: n = k
θ1 θ2 θ3 θ4 tk tk+1 ∆tk+1 order

forward Euler scheme 0 1 1 0 tn tn+1 ∆tn+1

backward Euler scheme (BWE) 1 0 0 1 tn tn+1 ∆tn+1 1

Crank–Nicolson scheme (CN) 0.5 0.5 0.5 0.5 tn tn+1 ∆tn+1 2
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9 The Time-Dependent Navier–Stokes Equations

• fractional-step θ-scheme [1]

◦ three-step scheme

◦ two variants

θ = 1−
√

2

2
, θ̃ = 1− 2θ, τ =

θ̃

1− θ , η = 1− τ

θ1 θ2 θ3 θ4 tk tk+1 ∆tk+1 order

FS0 τθ ηθ ηθ τθ tn tn + θ∆tn+1 θ∆tn+1

ηθ̃ τ θ̃ τ θ̃ ηθ̃ tn + θ∆tn+1 tn+1 − θ∆tn+1 θ̃∆tn+1 2

τθ ηθ ηθ τθ tn+1 − θ∆tn+1 tn+1 θ∆tn+1

FS1 τθ ηθ θ 0 tn tn + θ∆tn+1 θ∆tn+1

ηθ̃ τ θ̃ 0 θ̃ tn + θ∆tn+1 tn+1 − θ∆tn+1 θ̃∆tn+1 2

τθ ηθ θ 0 tn+1 − θ∆tn+1 tn+1 θ∆tn+1

[1] Bristeau, Glowinski, Periaux: Finite elements in physics, North-Holland, 73–187, 1986
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9 The Time-Dependent Navier–Stokes Equations

• popular approaches: BWE, CN, BDF2

• stability

◦ BWE, FS0, FS1, BDF2: strongly A-stable

◦ CN: A-stable

• FS1 less expensive than FS0 if computation of right-hand side costly

• number of papers with finite element error estimates available

◦ proofs become long

◦ same techniques as for continuous-in-time problem + discrete Gronwall’s

lemma
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9 The Time-Dependent Navier–Stokes Equations

• implementation

◦ goes along the same lines as for Stokes and Navier–Stokes equations

◦ additional loop over time instances needed

◦ temporal derivative leads to mass matrix M : symmetric, positive definite

◦ principal form of the system(
M + θ∆tn+1A θ∆tn+1B

T

∆tn+1B 0

)(
un+1

p
n+1

)
=

(
rhs

0

)
− mass matrix dominant for small time steps (good property!)

− our experience: scaling of discrete continuity equation very helpful for

efficiency of solvers
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9 The Time-Dependent Navier–Stokes Equations

• flow around a cylinder

◦ reference curves for drag and lift [1]
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[1] J., Rang, CMAME 199, 514–524, 2010
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9 The Time-Dependent Navier–Stokes Equations

• refinement in space with Q2/P
disc
1

P2/P1 Q2/P
disc
1

level velocity pressure all velocity pressure all

3 25 408 3248 28 656 27 232 9984 37 216

4 100 480 12 704 113 184 107 712 39 936 147 648

5 399 616 50 240 449 856 428 416 159 744 588 160

• refinement in time: ∆t ∈ {0.02, 0.01, 0.005}
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9 The Time-Dependent Navier–Stokes Equations

• error to the reference curve for the drag coefficient
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9 The Time-Dependent Navier–Stokes Equations

• error to the reference curve for the drag coefficient
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9 The Time-Dependent Navier–Stokes Equations

• error to the reference curve for the lift coefficient
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9 The Time-Dependent Navier–Stokes Equations

• error to the reference curve for the lift coefficient
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9 The Time-Dependent Navier–Stokes Equations

• temporal evolution of lift coefficient
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• BWE much to inaccurate (dissipative)
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9 Assessment of Preconditioners

• numerical studies [1]

• same solvers as for stationary Navier–Stokes equations

◦ 2d time-dependent Navier–Stokes equations, different refinement levels
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[1] Ahmed, Bartsch, J., Wilbrandt; CMAME 331, 492–513, 2018
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9 Assessment of Preconditioners

• numerical studies [1]

• same solvers as for stationary Navier–Stokes equations

◦ 3d time-dependent Navier–Stokes equations
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[1] Ahmed, Bartsch, J., Wilbrandt; CMAME 331, 492–513, 2018
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9 Solvers for Linear Saddle Point Problems

• numerical studies [1]

◦ time-dependent Navier–Stokes equations

− mass matrix dominates discrete momentum equation

− LSC with iterative solution of system with A (norm of residual reduced by a

factor of 100 with BiCGStab) best for small time steps

− expensive setup & factorization of Poisson-type matrix only in first time step

− number of BiCGStab iterations decreases with smaller time steps

− for largest time step often some multigrid method best

• recent experience: LSC works well in parallel framework with small number of

processors

◦ 50 processors (largest machine of the institute)

◦ MPI

◦ MUMPS for solving Poisson-type problem

[1] Ahmed, Bartsch, J., Wilbrandt; CMAME 331, 492–513, 2018
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9 The Time-Dependent Navier–Stokes Equations

• projection method

◦ motivation: schemes without need to solve (nonlinear) saddle point problems

◦ survey in [1]

[1] Guermond, Minev, Shen, CMAME 195, 6011–6045, 2006
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9 The Time-Dependent Navier–Stokes Equations

• idea: decoupled NSE to obtain separate equations for velocity and pressure

◦ approximation of time derivative given (q-step scheme)

∂tu (tn+1) ≈ 1

∆t

(
τqun+1 +

q−1∑
i=0

τjun−j

)
,

q∑
i=0

τj = 0

◦ equation for intermediate velocity: given p̂ or∇p̂

1

∆t

(
τqũn+1 +

q−1∑
i=0

τjun−j

)
− ν∆ũ+ (ũ · ∇)ũ = f −∇p̂ in Ω

◦ correction step for divergence-free velocity

1

∆t
(τqun+1 − τqũn+1) +∇ϕ (ũ) +∇p = ∇p̂ in Ω,

∇ · un+1 = 0 in Ω

ϕ(·) – given function
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9 The Time-Dependent Navier–Stokes Equations

• velocity computed in projection step is L2(Ω) projection of ũn+1 into

Hdiv(Ω) =
{
v ∈ L2(Ω), ∇ · v ∈ L2(Ω) : ∇ · v = 0 and v · n = 0 on Γ

}
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9 The Time-Dependent Navier–Stokes Equations

• non-incremental pressure-correction scheme

◦ p̂ = 0, ϕ (·) = 0

◦ proposed in [1,2]

◦ with backward Euler

• intermediate velocity

ũn+1 + ∆tn+1 (−ν∆ũn+1 + (ũn · ∇)ũn+1) = un + ∆tn+1fn+1 in Ω

with ũn+1 = 0 on Γ

• projection step

un+1 + ∆tn+1∇pn+1 = ũn+1 in Ω,

∇ · un+1 = 0 in Ω,

un+1 · n = 0 on Γ

[1] Chorin, Math. Comp. 22, 745–762, 1968

[2] Temam, Arch. Rational Mech. Anal. 33, 377–385, 1969
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9 The Time-Dependent Navier–Stokes Equations

• non-incremental pressure-correction scheme (cont.)

• taking divergence of projection step

∇ · ∇pn+1 = ∆pn+1 =
1

∆tn+1
∇ · ũn+1

◦ Poisson equation for the pressure

◦ boundary condition

∇pn+1 · n = − 1

∆tn+1
(un+1 − ũn+1) · n = 0

• error estimates: (u, p) result of projection step

‖p− p‖l∞(0,T ;L2(Ω)) + ‖u− ũ‖l∞(0,T ;H1(Ω)) ≤ C (u, p, T ) ∆t1/2

if in addition domain has regularity property

‖u− u‖l∞(0,T ;L2(Ω)) + ‖u− ũ‖l∞(0,T ;L2(Ω)) ≤ C (u, p, T ) ∆t
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9 The Time-Dependent Navier–Stokes Equations
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9 The Time-Dependent Navier–Stokes Equations

• non-incremental pressure-correction scheme (cont.)

◦ inf-sup stable finite elements not necessary

◦ however, spurious oscillations may appear if the time step becomes too small

◦ low orders of convergence

◦ splitting error isO (∆t) =⇒ first order time stepping scheme sufficient

◦ artificial Neumann boundary condition for the pressure induces a numerical

boundary layer
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9 The Time-Dependent Navier–Stokes Equations

• standard incremental pressure-correction scheme

◦ p̂ = pn, ϕ (·) = 0

◦ with BDF2

• intermediate velocity

3ũn+1 + 2∆t (−ν∆ũn+1 + (ũn · ∇)ũn+1)

= 4un − un−1 + 2∆t
(
fn+1 −∇pn

)
in Ω,

with ũn+1 = 0 on Γ

• projection step

3un+1 + 2∆t∇ (pn+1 − pn) = 3ũn+1 in Ω,

∇ · un+1 = 0 in Ω,

un+1 · n = 0 on Γ
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9 The Time-Dependent Navier–Stokes Equations

• standard incremental pressure-correction scheme (cont.)

• taking divergence of projection step

∆ (pn+1 − pn) =
3

2∆t
∇ · ũn+1 in Ω

◦ Poisson equation for the pressure update

◦ boundary condition

∇ (pn+1 − pn) · n = 0 on Γ

• error estimates, with appropriate initial step, (u, p) result of projection step

‖p− p‖l∞(0,T ;L2(Ω)) + ‖u− ũ‖l∞(0,T ;H1(Ω)) ≤ C (u, p, T ) ∆t

if in addition domain has regularity property

‖u− u‖l∞(0,T ;L2(Ω)) + ‖u− ũ‖l2(0,T ;L2(Ω)) ≤ C (u, p, T ) ∆t2
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9 The Time-Dependent Navier–Stokes Equations

• standard incremental pressure-correction scheme (cont.)
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9 The Time-Dependent Navier–Stokes Equations

• standard incremental pressure-correction scheme (cont.)

◦ similar estimates for Crank–Nicolson scheme

◦ splitting error isO
(
∆t2

)
=⇒ second order time stepping scheme sufficient

◦ artificial Neumann boundary condition for the pressure induces a numerical

boundary layer

◦ non inf-sup stable pairs of finite element spaces need stabilization

− consider steady-state solution, then problem for ũn+1 is of saddle point

type
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9 The Time-Dependent Navier–Stokes Equations

• rotational incremental pressure-correction scheme

◦ p̂ = pn, ϕ (ũ) = ν∇ · ũn+1

◦ with BDF2

• intermediate velocity

3ũn+1 + 2∆t (−ν∆ũn+1 + (ũn · ∇)ũn+1)

= 4un − un−1 + 2∆t
(
fn+1 −∇pn

)
in Ω,

with ũn+1 = 0 on Γ

• projection step

3un+1 + 2∆t∇ (pn+1 − pn) = 3ũn+1 − 2ν∆t∇ (∇ · ũn+1) in Ω,

∇ · un+1 = 0 in Ω,

un+1 · n = 0 on Γ
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9 The Time-Dependent Navier–Stokes Equations

• rotational incremental pressure-correction scheme (cont.)

• taking divergence of projection step

∆p̃n =
3

2∆t
∇ · ũn+1 with p̃n = pn+1 − pn + ν∇ · ũn+1

◦ Poisson equation for the modified pressure

◦ boundary condition

∇pn+1 · n =
(
fn+1 − ν∇×∇× un+1

)
· n on Γ

• error estimates, with appropriate initial step, (u, p) result of projection step

‖p− p‖l2(0,T ;L2(Ω)) + ‖u− ũ‖l2(0,T ;H1(Ω))

+ ‖u− u‖l2(0,T ;H1(Ω)) ≤ C (u, p, T ) ∆t3/2

if in addition domain has regularity property

‖u− u‖l2(0,T ;L2(Ω)) + ‖u− ũ‖l2(0,T ;L2(Ω)) ≤ C (u, p, T ) ∆t2
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9 The Time-Dependent Navier–Stokes Equations

• rotational incremental pressure-correction scheme (cont.)

• taking divergence of projection step

∆p̃n =
3

2∆t
∇ · ũn+1 with p̃n = pn+1 − pn + ν∇ · ũn+1

◦ Poisson equation for the modified pressure

◦ boundary condition

∇pn+1 · n =
(
fn+1 − ν∇×∇× un+1

)
· n on Γ

• error estimates, with appropriate initial step, (u, p) result of projection step

‖p− p‖l2(0,T ;L2(Ω)) + ‖u− ũ‖l2(0,T ;H1(Ω))

+ ‖u− u‖l2(0,T ;H1(Ω)) ≤ C (u, p, T ) ∆t3/2

if in addition domain has regularity property

‖u− u‖l2(0,T ;L2(Ω)) + ‖u− ũ‖l2(0,T ;L2(Ω)) ≤ C (u, p, T ) ∆t2
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9 The Time-Dependent Navier–Stokes Equations

• rotational incremental pressure-correction scheme (cont.)

◦ equivalent formulation of velocity step

3un+1 + 2∆t (ν∇×∇× un+1 + (ũn · ∇)ũn+1 +∇pn+1)

= 4un − un−1 + 2∆tfn+1 in Ω,

∇ · un+1 = 0 in Ω

◦ boundary condition for the pressure is consistent, can be derived from the

Navier–Stokes equations

Finite Element Methods for Incompressible Flow Problems · LNCC, Petropolis, February 25 – 28, 2019 · Page 263 (305)



9 The Time-Dependent Navier–Stokes Equations

• only ũn+1 needed in implementation

• our experience with non-incremental and standard incremental scheme: very

inaccurate at boundaries (bad drag and lift coefficients)
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9 The Time-Dependent Navier–Stokes Equations

• periodic vortex street in 2D
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incr. press. corr., ∆t=0.005, St = 0.2874

incr. press. corr., ∆t=0.001, St = 0.2982

coupled fully implicit, ∆t=0.005, St = 0.3003
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10. Outlook: Simulation of Turbulent Flows
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10 The Time-Dependent NSE – Turbulent Flows

• continuous equation: incompressible Navier–Stokes equations

∂tu− 2Re−1∇ · D(u) +∇ · (uuT ) +∇p = f in (0, T ]× Ω

∇ · u = 0 in [0, T ]× Ω

u(0,x) = u0 in Ω

+ boundary conditions

• turbulent flows: Re very large

• There is no exact definition of what is a turbulent flow !
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10 Turbulent Flows

• model: incompressible Navier–Stokes equations

∂tu− 2Re−1∇ · D(u) +∇ · (uuT ) +∇p = f in (0, T ]× Ω

∇ · u = 0 in (0, T ]× Ω

u(0,x) = u0 in Ω

+ boundary conditions

• turbulent flows: Re very large

◦ river flows

◦ storms

◦ flow around obstacles, e.g., cars

◦
...

• There is no exact definition of what is a turbulent flow !
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10 Turbulent Flows (cont.)

• possess flow structures of very different size

◦ hurricane Katrina (2005)

◦ some large eddies (scales), many very small eddies (scales)
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10 Characteristics of Turbulent Flows

• Richardson energy cascade [1]: energy is transported in the mean from large to

smaller eddies

◦ start of cascade: kinetic energy introduced

into flow by productive mechanisms at

largest scale

◦ inner cascade: transmitting energy to

smaller and smaller scales by processes

not depending on molecular viscosity

◦ end of cascade: molecular viscosity enforc-

ing dissipation of kinetic energy at smallest

scales

• smallest scales important for physics of the flow

[1] L.F. Richardson; Weather Prediction by Numerical Process, Cambridge University Press, 1922
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10 The Kolmogorov Energy Spectrum

• energy of scales in wave number space (Fourier space)

energy transfer

energy

energy dissipation

range range

production

energy−containing inertial subrange dissipation

universal equilibrium range

logE(k)

log k

k−5/3

• k – wave number

• E(k) – turbulent kinetic energy of modes with wave number k

• k−5/3 – law of energy spectrum: E(k) ∼ ε2/3k−5/3
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10 Size of the Smallest Scales

• Kolmogorov [1]:

energy is dissipated from eddies of

size

λ ∼ Re−3/4

Kolmogorov scale

[1] A. Kolmogorov; C. R. (Doklady) Acad. Sci. URSS (N.S.) 30, 301–305, 1941
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10 Impact on Numerical Simulations

• Direct Numerical Simulation (DNS) aims to simulate all persisting eddies

◦ Ω = (0, 1)3 =⇒ L = 1

◦ approx 107 cubic mesh cells (≈ 2153)

◦ low order method (mesh width ≈ resolution of discretization)

◦ =⇒ λ ≈ 1/215

◦ =⇒ Re ≈ 1290

• applications: Reynolds numbers larger by orders of magnitude

Direct Numerical Simulation not feasible !

• only resolved scales can be simulated

• transition from resolved to unresolved scales usually in inertial subrange
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10 Remarks to 3d vs. 2d

• smallest scales in 2d flows [1]: λ ∼ Re−1/2

• vortex stretching

◦ vorticity: ω = ∇× u
◦ neglect viscous term for large Reynolds numbers

Dω

Dt
=
∂ω

∂t
+ (u · ∇)ω ≈ ω · ∇u

− equation of infinitesimal line element of material

− if∇u acts to stretch the line element than |ω| will be stretched, too =⇒
vortex stretching, important feature of turbulent flows

− 2d: right-hand side vanishes =⇒ no vortex stretching

• 2d high Reynolds number flows create large structures (eddies)

• 3d turbulent flows destroy large structures (eddies)

2d flows at high Reynolds number are qualitatively different from 3d turbulent flows

[1] R.H. Kraichnan; Physics of Fluids 10, 1417-1423, 1967
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10 Turbulent Flows: Summary

• direct simulation not possible

• only large scales can be simulated

• physics: (very) small scales important, have to be taken into account

• Main questions for turbulence modeling (simulation of turbulent flows):

◦ How to define large?

− spatial averaging =⇒ Large Eddy Simulation (LES)

− projection in appropriate function spaces =⇒ Variational Multiscale (VMS)

Methods

◦ How to model the impact of the small scales onto the large scales?

− several proposals and dozens of variants

− here: Smagorinsky model (most popular)

• turbulence models should be less complex than the Navier–Stokes equations
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10 Large Eddy Simulation

• main idea in LES: large scales defined by averaging in space (convolution with

filter function)

◦ filter out small flow structures

◦ damp high wave numbers

• two-scale decomposition of the flow: large and unresolved scales

u = u + u′, p = p + p′

◦ u , p : large scales

◦ u′, p′ : subgrid scales

• goal of LES : approximate u , p =⇒ one needs equations for u , p
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10 The Space-Averaged Navier–Stokes Equations (cont.)

• derivation of space-averaged Navier–Stokes equations (literature) :

◦ filter Navier–Stokes equations with filter function g

g ∗ (∇ · u) = ∇ · u

◦ assume that convolution and differentiation commute

g ∗ (∇ · ·) = ∇ · (g ∗ ·)

◦ commute both operators

g ∗ (∇ · u) = ∇ · (g ∗ u) = ∇ · u

=⇒ expression for u
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10 The Space-Averaged Navier–Stokes Equations (cont.)

• assumption on commutation only valid for constant filter width and away from

boundaries

• mathematical analysis [1,2,3] shows that commutation error is not negligible

• practice: no approach to incorporate commutation errors, they are simply

neglected

• space-averaged Navier–Stokes equations in (0, T ]× Rd

∂t u − 2ν∇ · D (u ) +∇ ·
(
u u T

)
+∇ p = f +∇ ·

(
u u T − uuT

)
∇ · u = 0

• main issue in LES : model∇ ·
(
u u T − uuT

)
with (u , p )

◦ many proposals

[1] Dunca, J., Layton: Contributions to Current Challenges in Mathematical Fluid Mechanics, Birkhäuser Verlag, 53 – 78, 2004

[2] Berselli, J.: Math. Methods Appl. Sci. 29, 1709 – 1719, 2006

[3] Berselli, Grisanti, J.: J. Comp. Appl. Math. 206, 1027 – 1045, 2007
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10 The Smagorinsky Model

• most popular LES model

• derivation based on physical understanding: Boussinesq hypothesis

Turbulent fluctuations are dissipative in the mean.

=⇒ ∇ ·
(
uuT − u u T

)
≈ −∇ · (νTD (u )) + terms inc. in p

νT – eddy viscosity, turbulent viscosity

νT = cSδ
2 ‖D (u )‖F

• no explicit filter (possible to derive for homogeneous isotropic turbulence)

• Smagorinsky parameter

◦ δ should correspond to local mesh width (difficulty: anisotropic grids)

◦ constant (often of order 0.01)

◦ different proposal: functions in space and time (dynamical Smagorinsky model)
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10 The Smagorinsky Model (cont.)

• weak equation posseses unique solution∇w ∈ L3(0, T ;L3(Ω)) in 2d and 3d

for large data and large time intervals [1]

◦ more known than for Navier–Stokes equations (uniqueness in 3d)

Olga Alexandrovna Ladyzhenskaya (1922 – 2004)

• practical experience

◦ introduces often too much viscosity =⇒ dynamical Smagorinsky model

◦ smaller parameters at boundaries necessary, e.g., van Driest damping

[1] O.A. Ladyzhenskaya; Trudy Mat. Inst. Steklov. 102, 85–104, 1967
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10 LES: Summary

• analysis and modeling

◦ commutation errors arise, partially analyzed, important near boundaries

◦ Smagorinsky model with constant cS well analyzed (existence, uniqueness of

solution, finite element errors)

• practical application of LES models

◦ many models proposed, used

◦ Smagorinsky model (and variants) very popular

• literature

◦ best reference [1]

◦ more mathematical: [2,3]

[1] P. Sagaut; Large eddy simulation for incompressible flows, Springer, 2006

[2] L. Berselli, T. Iliescu, W.J. Layton; Mathematics of large eddy simulation of turbulent flows, Springer, 2006

[3] J.; Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics 51, 2016
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10 Variational Multiscale (VMS) Methods

• Variational Multiscale (VMS) methods

◦ going back to [1,2]

◦ main features

− based on variational formulation of Navier–Stokes equations

− scale separation defined by projections, different definition of large scales

than in LES!

◦ different realizations of VMS methods

◦ survey on derivation, properties, mathematical results, computational

experience in [3,4]

[1] Hughes; Comp. Meth. Appl. Mech. Engrg. 127, 387–401, 1995

[2] Guermond; M2AN 33, 1293–1316, 1999

[3] Ahmed, Chacón Rebollo, J., Rubino; Arch. Computat. Methods Engrg. 24, 115 – 164, 2017

[4] J.; Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics 51, 812 pages, 2016
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10 Basic Concepts

• two-scale VMS method

• decomposition in resolved and small scales

u = u+ u′, p = p+ p′

gives decomposition of weak form of Navier–Stokes equations

A (u; (u, p) , (v, q)) +A (u; (u′, p′) , (v, q)) = F (v)

A (u; (u, p) , (v′, q′)) +A (u; (u′, p′) , (v′, q′)) = F (v′)

• with notation

U =

(
u

p

)
, V =

(
v

q

)
and so on

• decompose

A (u;U ,V ) = Alin (U ,V ) + n(u,u,v)
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10 Basic Concepts (cont.)

• rewrite small scale equation

AU
(
U ′,V ′

)
+ n (u′,u′,v′) = −

〈
Res

(
U
)
,V ′

〉
(V×Q)′,(V×Q)

with

AU
(
U ′,V ′

)
= Alin

(
U ′,V ′

)
+ n (u′,u,v′) + n (u,u′,v′) ,〈

Res
(
U
)
,V ′

〉
(V×Q)′,(V×Q)

= Alin

(
U ,V ′

)
+ n (u,u,v′)− 〈f ,v′〉V ′,V

• interpretation: unresolved scales are a function of the residual of the resolved

scales

U ′ = FU
(
−Res

(
U
))

or U ′ = FU
(
−Res

(
U
)
,u′old

)
• goal of two-scale VMS method: find an approximation of FU
◦ usually NO physcial turbulence model involved, justification in [1]

[1] Guasch, Codina; Comp. Meth. Appl. Mech. Engrg. 261/262, 154–166, 2013
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10 Basic Concepts (cont.)

• three-scale VMS method

• decomposition of velocity and pressure

◦ the large scales (u, p)

◦ the small resolved scales (û, p̂)

◦ the unresolved scales (u′, p′)

• decomposition of equation

A (u; (u, p) , (v, q)) +A (u; (û, p̂) , (v, q)) +A (u; (u′, p′) , (v, q)) = F (v)

A (u; (u, p) , (v̂, q̂)) +A (u; (û, p̂) , (v̂, q̂)) +A (u; (u′, p′) , (v̂, q̂)) = F (v̂)

A (u; (u, p) , (v′, q′)) +A (u; (û, p̂) , (v′, q′)) +A (u; (u′, p′) , (v′, q′)) = F (v′)

• neglect blue terms

◦ unresolved scale test functions not available

◦ direct impact of unresolved scales onto large scales can be neglected

• model orange term
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10 Basic Concepts (cont.)

• Find (u, û, p, p̂) ∈ V × V̂ ×Q× Q̂ such that

A (u+ û; (u, p) , (v, q)) +A (u+ û; (û, p̂) , (v, q)) = F (v) ,

A (u+ û; (u, p) , (v̂, q̂)) +A (u+ û; (û, p̂) , (v̂, q̂))

+T (u+ û; (u, p) , (û, p̂) , (v̂, q̂)) = F (v̂)

• model is usually physical based, like an eddy viscosity model (Smagorinsky

model)

• approximation of (u, p) denoted by (wh, rh)
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10 A Two-Scale Residual-Based VMS Method

• proposed in [1]

• orthogonal spaces, with L2 projection or elliptic projection

V ×Q =
(
V ⊕ V ′

)
×
(
Q⊕Q′

)
,

• derivation based on perturbation series for ε =
∥∥Res

(
U
)∥∥

(V×Q)′
, assumed to

be small

U ′ = εU ′1 + ε2U ′2 + . . . =

∞∑
i=1

εiU ′i

• inserting series in equation for small scales, ordering terms

AU
(
U ′1,V

′) = −
〈

Res
(
U
)∥∥Res

(
U
)∥∥

(V×Q)′

,V ′

〉
(V×Q)′,(V×Q)

,

AU
(
U ′i,V

′) = −
i−1∑
j=1

n
(
u′i,u

′
j ,v
′) i ≥ 2

[1] Bazilevs, Calo, Cottrell, Hughes, Reali, Scovazzi; Comput. Methods Appl. Mech. Engrg. 197, 173–201, 2007
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10 A Two-Scale Residual-Based VMS Method

• modeling steps

◦ take only first term of series

U ′ ≈ εU ′1 =
∥∥Res

(
U
)∥∥

(V×Q)′
U ′1

◦ proposal from [1]: use linear approximation

U ′1 ≈ −δ
Res

(
U
)∥∥Res

(
U
)∥∥

(V×Q)′

,

δ – stabilization parameter (tensor-valued)

[1] Bazilevs, Calo, Cottrell, Hughes, Reali, Scovazzi; Comput. Methods Appl. Mech. Engrg. 197, 173–201, 2007
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10 A Two-Scale Residual-Based VMS Method

• model of the small scales

Ũ
′

= −δRes

((
wh

rh

))
= −

(
δm

(
∂tw

h − ν∆wh +
(
wh · ∇

)
wh +∇rh − f

)
µ
(
∇ ·wh

) )
= −

(
reshm
reshc

)
• resulting method: Findwh : (0, T ]→ V h, rh : (0, T ]→ Qh satisfying(

∂tw
h,vh

)
+
(
2νD

(
wh
)
,D
(
vh
))

+ n
(
wh,wh,vh

)
+
(
∇ ·wh, qh

)
−
(
∇ · vh, rh

)
+
(
reshc ,∇ · vh

)
+
(
reshm,∇qh

)
− n

(
reshm,w

h,vh
)

−n
(
wh, reshm,v

h
)

+ n
(
reshm, res

h
m,v

h
)

= 〈f ,vh〉V ′,V

for all
(
vh, qh

)
∈ V h ×Qh
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10 A Two-Scale Residual-Based VMS Method

• the additional terms

◦ grad-div stabilization

◦ SUPG terms

◦ model for second cross term and subgrid scale term

• proposal of stabilization parameter in [1] gives for uniform meshes and

convection-dominated regime δm ∼ h and µ ∼ h
◦ optimal choice for SUPG/PSPG/grad-div method for Oseen equations and

equal-order interpolations

• numerical studies in the literature only for equal-order interpolations

[1] Bazilevs, Calo, Cottrell, Hughes, Reali, Scovazzi; Comput. Methods Appl. Mech. Engrg. 197, 173–201, 2007
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10 VMS Method with Time-Dependent Orthogonal Subscales

• two-scale method, proposed in [1]

• large scale spaces: finite element spaces V h ×Qh
• small scale spaces: Ṽ ′ × Q̃′ such that

V = V h ⊕ Ṽ ′ and Q = Qh ⊕ Q̃′

• small scale equation with integration by parts and smooth solution

〈∂tu′ − ν∆u′ + (u′ · ∇)u+ (u · ∇)u′ + (u′ · ∇)u′ +∇p′,v′〉V ′,V + (∇ · u′, q′)
= −〈∂tu− ν∆u+ (u · ∇)u+∇p− f ,v′〉V ′,V − (∇ · u, q′)

[1] Codina; Comp. Meth. Appl. Mech. Engrg. 191, 4295–4321, 2002
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10 VMS Method with Time-Dependent Orthogonal Subscales

• first idea: do not neglect temporal derivative of small scales

∂tu
′ ≈ ϑu

′ − u′old

∆t
,

ϑ depends on temporal discretization

• linear ansatz for small scales

U ′ = −δ
(
Res

(
U ,u′old

)
+ V orth

)
• second idea: subscales should be L2(Ω) orthogonal to finite element space =⇒

δV orth = −PhL2

(
δRes

(
U ,u′old

))
and

U ′ = −
(
I − PhL2

) (
δRes

(
U ,u′old

))
• some simplifications applied for practical reasons
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10 VMS Method with Time-Dependent Orthogonal Subscales

• find (wh, rh) such that(
∂tw

h,vh
)

+ ν
(
∇wh,∇vh

)
+ n

(
wh +w′,wh,vh

)
−
(
∇ · vh, rh

)
+
(
∇ ·wh, rh

)
+
∑
K∈T h

((
I − PhL2

) (((
wh +w′

)
· ∇
)
wh +∇rh

)
,

δm,K
(((
wh +w′

)
· ∇
)
vh +∇qh

))
K

+
∑
K∈T h

((
I − PhL2

) (
∇ ·wh

)
, µK∇ · vh

)
K

=
(
f ,vh

)
+
∑
K∈T h

((
I − PhL2

)
f , δm,K

(((
wh +w′

)
· ∇
)
vh +∇qh

))
K

+
ϑ

∆t

∑
K∈T h

(
w′old, δm,K

(((
wh +w′

)
· ∇
)
vh +∇qh

))
K

• global projection

• advection velocity
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10 VMS Method with Time-Dependent Orthogonal Subscales

• equation for subscales

w′|K = δm,K

(
ϑ
w′old

∆t
−
(
I − PhL2

) (((
wh +w′

)
· ∇
)
wh +∇rh − f

))∣∣∣∣
K

• variations/refinements/extensions of this prototype method exist

• stabilization parameters in [1] for equal-order finite elements

• numerical studies in literature only for equal-order finite elements

• w′old = 0: static or quasi-static subscales

• V orth = 0: algebraic subgrid scale (ASGS) VMS method

• ASGS with static subscales: same derivation principles as for two-scale

residual-based VMS method from [2] (but different final method)

• backscatter of energy only subscales are time-dependent [3,4]

[1] Codina; Comp. Meth. Appl. Mech. Engrg. 191, 4295–4321, 2002

[2] Bazilevs, Calo, Cottrell, Hughes, Reali, Scovazzi; Comput. Methods Appl. Mech. Engrg. 197, 173–201, 2007

[3] Principe, Codina, Henke; Comp. Meth. Appl. Mech. Engrg. 199, 791–801, 2010

[4] Codina, Principe, Badia; Lect. Notes Appl. Comput. Mech. 55, 75–93, 2011
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10 Algebraic Variational Multiscale-Multigrid Methods

• three-scale method

◦ AVM3 proposed in [1,2]

◦ AVM4 proposed in [3]

• definition of the separation of the resolved scales

◦ uses ideas from algebraic multigrid (AMG) methods

◦ does not need another finite element space or another grid

◦ definition of the large scales

S3h
h : V h → V h, u3h = Ph3hR

3h
h u

h

R3h
h – restriction, plain aggregation, Ph3h =

(
Rh3h

)T
◦ scale separation, ûh – small resolved scales

uh = u3h + ûh ⇐⇒ ûh = uh − u3h

[1] Gravemeier, Gee, Wall; Comp. Meth. Appl. Mech. Engrg. 198, 3821–3835, 2009

[2] Gravemeier, Gee, Kronbichler, Wall; Comp. Meth. Appl. Mech. Engrg. 199, 853–864, 2010

[3] Rasthofer, Gravemeier; J. Comput. Phys. 234, 79–107, 2013
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10 Algebraic Variational Multiscale-Multigrid Methods

• AVM3

◦ start with two-scale decomposition

u = uh + u′, p = ph + p′

◦ neglect equation for unresolved test function(
∂tu

h,vh
)

+
(
2νD

(
uh
)
,D
(
vh
))

+
((
uh · ∇

)
uh,vh

)
+
(
∇ · uh, qh

)
−
(
∇ · vh, ph

)
=

(
f ,vh

)
−
[ (
∂tu
′,vh

)
+
(
2νD (u′) ,D

(
vh
))

+
((
uh · ∇

)
u′,vh

)
+
(
(u′ · ∇)uh,vh

)
+
(
(u′ · ∇)u′,vh

)
−
(
∇ · vh, p′

) ]
−
(
∇ · u′, qh

)
◦ split test function vh = v3h + v̂h in blue term

◦ apply assumption for a three-scale VMS method to blue term

− direct impact of unresolved scales on large scales is neglected

− model direct impact of unresolved scales on small resolved scales
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10 Algebraic Variational Multiscale-Multigrid Methods

• AVM3 (cont.)

◦ in [1]: Smagorinsky model

∇ ·
(
CSh

2
∥∥∥D(ûh)∥∥∥

F
D
(
ûh
))

= ∇ ·
(
νT

(
ûh
)
D
(
ûh
))

◦ realizations of AVM3 only for Q1/Q1

− in practice added PSPG-type stabilization

◦ short form

A
(
wh;

(
wh, rh

)
,
(
vh, qh

))
+ PSPG-type stabilization

+
(
νT

(
ŵh
)
D
(
ŵh
)
,D
(
vh
))

= F
(
vh
)

• AVM4 – algebraic multiscale-multigrid-multifractal method

◦ uses so-called multifractal model of u′ instead of eddy viscosity model

[1] Gravemeier, Gee, Kronbichler, Wall; Comp. Meth. Appl. Mech. Engrg. 199, 853–864, 2010
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10 Coarse Space Projection-Based VMS Method

• three-scale method

◦ based on ideas from [1]

◦ complete development and realization in [2]

• large scale space LH – space of symmetric tensor-valued functions

• method(
∂tw

h,vh
)

+ (2νD
(
wh
)
,D
(
vh
)
) + n(wh,wh,vh)

−
(
∇ · vh, rh

)
+
(
νT

(
D
(
wh
)
−GH

)
,D
(
vh
))

= 〈f ,vh〉V ′,V(
∇ ·wh, qh

)
= 0(

D
(
wh
)
−GH ,LH

)
= 0

◦ definition of small resolved scales by projection

[1] Layton; Appl. Math. Comput. 133, 147–157, 2002

[2] J., Kaya; SIAM J. Sci. Comp. 26, 1485–1503, 2005
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10 Coarse Space Projection-Based VMS Method

• short form

A
(
wh;

(
wh, rh

)
,
(
vh, qh

))
+
(
νT

(
D
(
wh
)
−GH

)
,D
(
vh
))

= F
(
vh
)

◦ similar structure as for AVM3, AVM4

• generally Smagorinsky type models used for νT

• choice of LH : discontinuous space on the same grid (P0, P
disc
1 , mixed in an

adaptive algorithm)
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10 Other VMS Methods

• local projection stabilization (LPS) methods

◦ can be considered as two-scale VMS methods [1]

◦ structure is obtained by replacing in VMS method with time-dependent

orthogonal subscales the global L2(Ω) projection by a local projection

• three-scale bubble VMS methods

◦ represent small resolved scales with bubble functions

[1] Braack, Burman; SIAM J. Numer. Anal. 43, 2544–2566, 2006
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10 Numerical Example

• turbulent channel flow at Reτ = 180 (friction Reynolds number)
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mean velocity profile

• very coarse grid: 8× 16× 8 cells, finer towards the walls
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10 Numerical Example

• Smagorinsky LES model
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◦ second order statistics

Th12,mean = 〈〈uh1uh2 〉s〉t − 〈〈uh1 〉s〉t〈〈uh2 〉s〉t
◦ very sensitive to the choice of the Smagorinsky parameter
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10 Numerical Example

• projection-based VMS models
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◦ left: VMS model with different parameters

◦ right: comparison with Smagorinsky LES model for second order statistics

• VMS model more accurate

◦ consistent statement in literature for all VMS models
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10 Summary

• simulation of turbulent flows requires turbulence modeling

◦ situation will not change in foreseeable future

• much progress in past two decades

◦ LES approaches developed further

◦ VMS methods introduced

• VMS models

◦ distinguish two-scale and three-scale VMS methods

◦ different realizations

− usually only in the group of the developer of the method

◦ ongoing project: implementation of various VMS methods in in-house code

PARMOON (Parallel Mathematics and object-oriented Numerics) [1]

• more details in [2] and [3]

[1] Wilbrandt, Bartsch, et al.; Comput. Math. Appl. 74, 74–88, 2017

[2] Ahmed, Chacón Rebollo, J., Rubino; Arch. Computat. Methods Engrg. 24, 115 – 164, 2017

[3] J.; Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics 51, 812 pages, 2016
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Thank you for your attention !

http://www.wias-berlin.de/people/john/
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