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1 Convection-Diffusion-Reaction Equations

e ) —bounded domain in RY, d € {2,3}
e steady-state convection-diffusion-reaction equations

—cAu+b-Vu+cu=f inQ

o boundary conditions

time-dependent convection-diffusion-reaction equations
Ou—cAu+b-Vu+cu=f in(0,T] x Q

o initial condition
o boundary conditions

model for transport of species (concentration, temperature, . . .)
o diffusive transport
o convective transport

convection-dominated case £ < ||b|| ¢, of interest in applications
o typical feature: layers
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1 Convection-Diffusion-Reaction Equations

e Galerkin finite element discretization: numerical solution globally polluted with
large spurious oscillations

solution
1.953+05

1.66+5
12645
o4

de+d

IR oo o o,

0.0006+00

e —> stabilization necessary
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1 Convection-Diffusion-Reaction Equations

e classical stabilizations: add terms to Galerkin finite element discretization
o most popular method: Streamline-Upwind Petrov—Galerkin (SUPG) method, [1,2]

o stabilization in streamline direction with additional term

Z (—eAup +b-Vuy +cup — f,ynb-Vor) i
KeTy

o a standard parameter choice

_ Iblhk

,Uh,|K = 2pe

hk 1
——— &(Peg) with £(a) = cotha — —, Pe
e advantages
o numerical analysis available
o higher order of convergence in appropriate norms for higher order finite
elements

[1] Hughes, Brooks; Finite Element Methods for Convection Dominated Flows, 19 — 35, 1979

[2] Brooks, Hughes; Comput. Methods Appl. Mech. Engrg. 32, 199 — 259, 1982
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1 Convection-Diffusion-Reaction Equations

e typical result in numerical simulations

solution
1.189€+00

&

o

o

En 25
0.000e+00

® (strong) spurious oscillations in vicinity of layers

o not tolerable in many applications
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1 Convection-Diffusion-Reaction Equations %

e comprehensive numerical assessments of stabilized finite element methods

o steady-state problems [1]

o time-dependent problems [2]

e results

o algebraic stabilizations from [3,4,5] showed very good results

o comparative study from [2]: FEM—FCT schemes. These were clearly the best
schemes.

o comparative study from [1]: From the more modern approaches which were
included in this study, FEMTVD (AFC) stands out somewhat by suppressing
under- and overshoots . . .

o moderate smearing of layers

[1] Augustin, Caiazzo, Fiebach, Fuhrmann, J., Linke, Umla; Comput. Methods Appl. Mech. Engrg. 200, 3395 — 3409, 2011
[2] J., Schmeyer; Comput. Methods Appl. Mech. Engrg. 198, 475 — 494, 2008

[3] Kuzmin; Proc. Int. Conf. Comp. Meth. for Coup. Prob. in Sci. and Engrg., CIMNE, 2007

[4] Kuzmin, Méller; in Flux-Corrected Transport: Principles, Algorithms and Applications, 155 — 206, 2005

[5] Kuzmin; J. Comput. Phys. 228, 2517 — 2534, 2009
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1 Convection-Diffusion-Reaction Equations zﬁ@

e starting point: algebraic linear system of equations of Galerkin discretization
AU=G AeR"™™"

e define symmetric matrix ID with

dij = dji = —max{ai;,0,a5,}, i # j, di=—) dy

i#]
e equivalent system
(A+D)U =G +DU

o A + IDis an M-matrix

e decomposition into fluxes
DU); = f = dij (uj — wi)
J#i J#i
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1 Convection-Diffusion-Reaction Equations

e ansatz for algebraic stabilization scheme

((A+D)U)1:G1+Z(}//fz]a 221,,M
J

o limiter a;; € [0,1]
o ay; = 1forall 4, j: original Galerkin discretization
o «a;j = Oforall ¢, j: corresponds to low order discretization (very diffusive)
o {a;;} depend usually on solution == nonlinear discretization
o difficulties
o appropriate choice of a;;
o numerical analysis: completely different construction as all other stabilized
finite element schemes
e advantage
o implementation independent of the dimension (if limiter do not depend on the
grid)
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2 Numerical Analysis of Algebraic Stabilizations

e first numerical analysis in [1]

o

[¢]

[¢]

1d problem without assuming a;; 7 o

no conservation

construction of examples without solution possible

subproblems in fixed point iteration have unique solution

redefinition of limiters

— nonlinear problem has solution

— discrete maximum principle (DMP) only approximately satisfied (order of a
small regularization parameter)

e main conclusion: symmetry of limiter also desirable from mathematical point of

view

[1] Barrenechea, J., Knobloch; IMA J. Numer. Anal. 35, 1729 — 1756, 2015
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2 Numerical Analysis of Algebraic Stabilizations

e numerical analysis for multi-dimensional problems in [1]
e starting point: linear system of equations

N
Zaijuj = gja izl,...,M,
j=1
w = u,i=M+1,...,N

o assumption: A is positive definite
e rewrite the system with limiters

N N
Zaijuj—i—Z(l—aij)dij(uj—ui) = gj,i:L...,M,
j=1 j=1

w = w’,i=M+1,...,N

(]

o symmetric limiter: a,;; =

[1] Barrenechea, J., Knobloch; SIAM J. Numer. Anal. 54, 2427 — 2451, 2016
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2 Numerical Analysis of Algebraic Stabilizations

e solvability of nonlinear problem:
o leta;; : RN — [0, 1] be such that

Qij = aij(ul, e ,UN)(UJ' — ’U,Z')

is a continuous function of uy, ..., uN
o == there is a solution of nonlinear problem
o proof: based on Brouwer’s fixed point theorem

Algebraic Finite Element Stabilizations for C: ion-Diffusion Equations - Workshop on Computational Modeling and Nu- W
merical Analysis 2019, LNCC - Petropolis, 25-28 February 2019 - Page 12 (53) AS)



2 Numerical Analysis of Algebraic Stabilizations

e solvability of nonlinear problem:
o leta;; : RN — [0, 1] be such that

Qij = aij(ul, e ,UN)(UJ' — ’U,Z')

is a continuous function of uy, ..., uN
o == there is a solution of nonlinear problem
o proof: based on Brouwer’s fixed point theorem

e corollary: there is a unique solution of the linear system with c;; € [0, 1],
,7=1,...,N
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2 Numerical Analysis of Algebraic Stabilizations

e criterion for continuity condition:
o letay; : RY — [0, 1] satisfy

i = = S RY, u; i
a;;(U) G —wl + By (U) VYU = (ug uy) € u; # U

— A;j, Bij : RN — [0, 00) are nonnegative functions
— continuous at any point U € RY with u; # U
o = 0,;(U) := ay;(U)(u; — ;) is continuous function of u,

RN

.., uUN On

- Workshop on Computational Modeling and Nu-
AS)
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2 Numerical Analysis of Algebraic Stabilizations

o Kuzmin limiter [1] (standard)
o using ideas from [2]
o compute for all pairs ¢, j € {1,..., N}

Pt =Pt +max{0, fi;} , P := P, —max{0, f;;}  ifa;; <ay,
QF = Qf + max{0, f;;} , Q7 == Q; —max{0, fi;}  ifi<j,
Q;‘ = Q;‘ + max{0, fi;}, Q; =0Q; — max{0, f;;} ifi<j
o compute
+ —
Jﬁﬁzmm{LQ%},]ﬁﬁzmm{LQi},i:L“qN
P, P,

%

o set at Dirichlet nodes

Rf:=1, R =1, i=M+1,...,N

[1] Kuzmin; Proc. Int. Conf. Comp. Meth. Coupl. Prob. Sci. Engrg., CIMNE 1 — 5, 2007
[2] Zalesak; J. Comp. Phys. 31, 335 — 362, 1979
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2 Numerical Analysis of Algebraic Stabilizations

e Kuzmin limiter [1] (cont.)
o foranyi,j € {1,..., N} suchthata;; < a;; set
R i fi; >0,
Q5 1= 1 if fij = O7 Qi 1= Qy
Rz_ if fij <0,

[1] Kuzmin; Proc. Int. Conf. Comp. Meth. Coupl. Prob. Sci. Engrg., CIMNE 1 — 5, 2007
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2 Numerical Analysis of Algebraic Stabilizations

o Kuzmin limiter [1] (cont.)
o foranyi,j € {1,..., N} suchthata;; < a;; set
Rj if fij >0,
Oéij = 1 if fij = 07 Otﬁ = aij
Rz_ if fij <0,
® «y; are such that a;;(uq, ..., un)(u; — u,) are Lipschitz-continuous functions
ofug,...,uy on RN
o proof based on rewriting limiters and deriving representation that fits into the
criterion of continuity with
1 min{—-P;,-Q; } if u; <uy,
|di;] min{P;", Q] } it w; > uy,
1 —P7 it u; <wuy,

ldi| | PF i ug >y

?

Aij =

Bij =

[1] Kuzmin; Proc. Int. Conf. Comp. Meth. Coupl. Prob. Sci. Engrg., CIMNE 1 — 5, 2007
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2 Numerical Analysis of Algebraic Stabilizations

e discrete maximum principle can be proved
o iij.V:1 a;j > 0, thenforanyi € {1,..., M}

<0 = u; < max w; foru; 20 = u; < max
JF#i, ai; 70 J#t, aij #0

9;>0 = w;> min w; foru; <0 = wu; > min
J#4, ai; 70 J#4, ai 70

o ifZ;V:laij =0,thenforanyi € {1,...,M}

9:<0 = u; < max wuy

+
Uj

Uy

J#1, aij 70
920 = wu;> min wuy
J#i, i 70
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2 Numerical Analysis of Algebraic Stabilizations

e convergence
e flux correction scheme is equivalent to variational problem
find up, € Wh, such that up (z;) = up(z;), i =M +1,..., N, and

an(un,vn) + dp(up;un,vn) = (g,vn) Yo, €V

@]

V}, — finite element space with homogeneous Dirichlet boundary conditions

o

W}, — finite element space with prescribed Dirichlet boundary conditions
an (- ) — approximation of bilinear form of continuous problem with

[¢]

ah(vh,vh) > C, ||UhH3 Yo, €V,

o stabilization
N
dp(wp; zp, vp) = E (1—cvj(wn)) dij (zj —2zi) vi ¥ wp, zn, v, € Wh
i,j=1
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2 Numerical Analysis of Algebraic Stabilizations

® convergence (cont.)
e Cauchy—Schwarz inequality holds

|dn (w; 2,v)[* < dp(w; 2, 2) dp (w;v,v) ¥V w, 2,0 € C(Q)

e natural normon V,

9 1/2
||vh||h = (Ca ||’UhHa + dh(Uh;’Uh,Uh)> , Un € Vh
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2 Numerical Analysis of Algebraic Stabilizations

convergence (cont.)
Cauchy—Schwarz inequality holds

|dh(w;z,v)|2 < dp(w; 2, 2) dp(w;v,v) Y w, z,v € C(Q)

e natural normon V,

9 1/2
||vh||h = (Ca ||’Uh||a + dh(Uh;’Uh,Uh)> , Un € Vh

abstract error estimate (Strang-type) can be derived

lu—unll, < CA2|lu—inul,
+ sup a(u,vp) — ap(ipu, vp)
onEVi v lly,

+ (dh(uh;ihu,ihu))l/2

o interpolation error
o consistency error
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2 Numerical Analysis of Algebraic Stabilizations

e convergence (cont.)
e application of abstract approach to steady-state convection-diffusion reaction

equations

a(u,v) =& (Vu, Vo) + (b - Vu,v) + (cu,v)
with
V:-b=0, ¢c>09>0 inQ

e P finite elements
e discrete bilinear form by using mass lumping

M M
(cun,vn) =Y (cun, i) vi = Y (e, p) wivi ¥ up € Wy, vy €V,
i=1 i=1

o matrix ID becomes independent of reaction
o consistency error from mass lumping

M
(cun,vn) =Y (e, i) uivi| < Chllellg o lunlallvallos
=1
Algebraic Finite Stabilizations for C ion-Diffusion Equations - Workshop on Computational Modeling and Nu- W

merical Analysis 2019, LNCC - Petropolis, 25-28 February 2019 - Page 19 (53) AS)



2 Numerical Analysis of Algebraic Stabilizations

e convergence (cont.)
e norm from coercivity of bilinear form

lolla = lvli o + oo llvl§
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2 Numerical Analysis of Algebraic Stabilizations

e convergence (cont.)
e norm from coercivity of bilinear form

o]l = e vl o + oo llvll5 «
e interpolation error

Ju = ipull, < C (e +00h*) 2 hlulyg
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2 Numerical Analysis of Algebraic Stabilizations

e convergence (cont.)
e norm from coercivity of bilinear form

vl = eloliq+oollvl§ o
e interpolation error
lu = inully < C (e +00h?)? hfulyq
e first consistency error (oo > 0)

a(u,vp) — ap(tpu, v
sup (u,vp) — ap(ipu, vp)

< C(e+ay ' {[b]
v €V th”h

b0 HlElF c0.0) 2 1 lullz g

o additional dependency on e tifog =0
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2 Numerical Analysis of Algebraic Stabilizations

e convergence (cont.)
e second consistency error: only with the assumptions «;; € [0, 1], a;; = oy

dp(wp; ihu,ihu)1/2 <Cl(e+ ”bHO,oo,Q h)l/Q ‘Z‘huh@ Vwy, € Wi, u€ C(ﬁ)

o convergence order lost already in first step of the proof

N
dn(wn; inuinw) = Y (1= ai(wn)) |dig] [u(z:) — ulz)]®
ij=1
oy
<D0 > ldylfule) — u(ay)?
TeTh xix; €T
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2 Numerical Analysis of Algebraic Stabilizations

e convergence (cont.)
o final estimate

lu —unll, < C(e+og  {IIbIF s+ llelld oo .0} + 00h*) /2 hlull20

+C (6 + ||b| 0,00,Q h)1/2 |’L'hu|1’g .

o in general only order (0.5 in convection-dominated regime
o in general no convergence in diffusion-dominated regime

[1] Barrenechea, J., Knobloch; SIAM J. Numer. Anal. 54, 2427 — 2451, 2016
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2 Numerical Analysis of Algebraic Stabilizations

e convergence (cont.)
o final estimate

lu—unll, < C(e+o5" {Ib|

6000 l1€lld oo.0} +00h*) 2 1 lull2.0

+C (e + ||bllo.co.2 B) Y2 |inul1a -

o in general only order (0.5 in convection-dominated regime

o in general no convergence in diffusion-dominated regime

o numerical studies in [1] with a;; = 0.5: estimate is sharp within the
assumptions of the analysis

o refined analysis of diffusion-dominated regime on special types of grids proves
better results
— all angles of the triangles smaller than 7r/2: first order convergence
— all angles of the triangles smaller or equal than 7 /2: order convergence 0.5

[1] Barrenechea, J., Knobloch; SIAM J. Numer. Anal. 54, 2427 — 2451, 2016
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2 Numerical Analysis of Algebraic Stabilizations

® convergence (cont.)

e results with Kuzmin limiter, convection-dominated case
o arithmetic mean value of {1 — c;;(us)} tends almost linearly to 0
o optimal order of convergence only on Friedrichs—Keller type grids

||€hH0)Q ord. |€h|]_,Q ord. ”ehHh ord.
5.457e—3 185 2.287e—1 1.10 1.114e—1 0.97
1.408e—3 1.95 1.074e—1 1.09 5.319e—2 1.07
3.493e—4 201 5.113e—2 1.07 2.472e—2 1.11
8.652e—5 2.01 2.546e—2 1.01 1.158e—2 1.09
2.152e—5 2.01 1.321e—2 0.95 5533e—3 1.07
8 | 5.357e—6 2.01 6.822e—3 0.95 2.685e—3 1.04

N o o W~
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2 Numerical Analysis of Algebraic Stabilizations

e convergence (cont.)
e results with Kuzmin limiter, convection-dominated case

o reduced order of convergence on irregular grids

l llenllo,o  ord. lenl1,0  ord. llen]lr,  ord.
3 | 6.125e—3 1.61 3.202e—1 0.71 9.209e—2 1.06
4 | 2216e—3 1.47 2.244e—1 051 4.493e—2 1.04
5| 9.946e—4 1.16 1.821e—1 0.30 2.226e—2 1.01
6 | 49983e—4 099 1.559e—1 0.22 1.125e—2 0.98
7 | 2519e—4 0.99 1.375e—1 0.18 5.682¢e—3 0.98
8 | 1.277e—4 0.98 1.231e—1 0.16 2.874e—3 0.98
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2 Numerical Analysis of Algebraic Stabilizations

e summary

o first numerical analysis (error estimates, convergence) of algebraic
stabilizations in [1]

o obtained much more insight into these methods
— in particular into their shortcomings

o convergence in standard norms generally not optimal

o supported by numerical examples

o order of convergence depends on the used type of grid

[1] Barrenechea, J., Knobloch; SIAM J. Numer. Anal. 54, 2427 — 2451, 2016
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3 Algebraic Stabilization with Linearity Preservation

e linearity preservation: stabilization vanishes if the solution is a first order
polynomial

o Kuzmin limiter not linearity preserving on general meshes

e definition of a new limiter in [1]

o is linearity preserving

[1] Barrenechea, J., Knobloch; M3AS 27, 525 — 548, 2017
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3 Algebraic Stabilization with Linearity Preservation

e definition of the limiter
e setforanyi e {1,...,M}

max min :
u; = max uj, u; = min u;, ¢ =" Z dis
’ jes,ufay 2" jesiopy o BT .
JES:
with v; > 0
e define
+ . + - . — + . - . i
Pi = E i e T Z fi]’ s QZ =g (Ui_uinax)a Qz = (Ui_U?lm
JES; JES;
e define

+ —
R;-" = min-< 1, Q—:_ , Ry ==minq1, Q’_
b, b,

e P or P vanishes, set R; :=lor R; :=1

K3
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3 Algebraic Stabilization with Linearity Preservation

e definition of the limiter (cont.)

e define
+ .
Ri if fij >0,
Qi = 1 it fi;=0, ¢=1,....M,j=1,...,N
Rz_ if fl‘j <0,
® set
Q5 1= min{aij,aji} y ’L,j = 1, cee ,M,
Qi 1= Qg i=1,....M,5=M+1,...,N
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3 Algebraic Stabilization with Linearity Preservation

e DMP
O assume
N
> a; >0, i=1,...,M
j=1
O assume

thereexists j € {1,..., N}, j#1: a;; <0 or a;; <aj

— typically satisfied for finite element discretizations of convection-diffusion
equations
o = DMP satisfied
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3 Algebraic Stabilization with Linearity Preservation

e DMP
O assume
N
> a; >0, i=1,...,M
j=1
O assume

thereexists j € {1,..., N}, j#1: a;; <0 or a;; <aj
— typically satisfied for finite element discretizations of convection-diffusion
equations
o = DMP satisfied
e limiter is of the form

<I)”(U) = aij(ul, e ,UN)(Uj — ’U,i)
and it is a continuous functions of u1, ..., uN on RN

o = existence of solution of nonlinear discrete problem
o == unique solution of linearized problem
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3 Algebraic Stabilization with Linearity Preservation

e convergence
o same analysis and results as for Kuzmin limiter
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3 Algebraic Stabilization with Linearity Preservation

e convergence
o same analysis and results as for Kuzmin limiter

e linearity preservation: with appropriate choice of parameter ~;
o patch around vertex z;

A; = supp p;
o A§™ convex hull of A;
o if
max |ZC2 - 17j|
Tj coA; : ) 1 M
1 ey e —— 1= e
© dist(xg, OARY) T

then algebraic stabilization scheme is linearity preserving

o same property for larger values of ~;
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3 Algebraic Stabilization with Linearity Preservation

e linearity preservation (cont.)

o examples

Y =2 v =2 v =2 Vi =2 Vi =2
o value for general patch in 2d easily to compute
o easy to compute upper bound for value in 3d

[1] Allende, Barrenechea, Rankin; SIAM J. Sci. Comput. 39, A1903 — A2927, 2017

Algebraic Finite Stabilizations for Ci ion-Diffusion Equations - Workshop on Computational Modeling and Nu-
merical Analysis 2019, LNCC - Petrdpolis, 25-28 February 2019 - Page 31 (53)



3 Algebraic Stabilization with Linearity Preservation

e linearity preservation (cont.)

o examples

Y =2 v =2 v =2 Vi =2 Vi =2
o value for general patch in 2d easily to compute

o easy to compute upper bound for value in 3d

e all results hold for arbitrary simplicial grids

e in particular: DMP + linearity preservation + optimal convergence (numerical
experience) in diffusion-dominated regime, e.g., Poisson equation

e open problem: how to use linearity preservation in numerical analysis?

e fully computable a posteriori error estimator in [1]

[1] Allende, Barrenechea, Rankin; SIAM J. Sci. Comput. 39, A1903 — A2927, 2017
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4 Connection to Edge-Based Stabilizations

e edge-based stabilizations already proposed in [1]: continuous interior penalty
(CIP) method

o linear discretization

e link between AFC schemes and nonlinear edge-based stabilizations established
in [2]
o different tools in the analysis of AFC schemes can be applied
o unified analysis of both schemes possible [3]
— existence of a solution
— minimal conditions for validity of DMP
— finite element error estimates

[1] Burman, Hansbo; CMAME 193, 1437 — 1453, 2004
[2] Barrenechea, Burman, Karakatsani; Numer. Math. 135, 521 — 545, 2017

[3] Barrenechea, J., Knobloch, Rankin; SeMA Journal 75, 655 — 685, 2018

Algebraic Finite Element Stabilizations for Convection-Diffusion Equations - Workshop on Computational Modeling and Nu- W
merical Analysis 2019, LNCC - Petrdpolis, 25-28 February 2019 - Page 32 (53)



4 Connection to Edge-Based Stabilizations zﬁ@

e link to edge-based stabilizations: P; finite elements

dp (up; vh, wh)

= Z(l — v (un))dij( ) w; + Z — ;i (up))dij(v; — vi)w;

el 20— exyun) (05 = i+ 3 (1 = aiCn) )i 01 = )
symm. éa — ey (un))dij (v — i) (w; — w)
_ Ez]; (1 — ap(un))|de|(vn(@E1) — vn(ze.2)) (Wh(zs1) — wa(TE2))
- Eijhu —ag(up))|de|he (Yo, - te, Vo, - tg)

o index £ denotes quantities on edge E' that connects £, and £ g 2
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5 Numerical Studies on Accuracy for Different Limiters

e limiters
o Kuzmin limiter [1]
o BJK limiter [2], linearity preserving
o BBK limiter [3], edge-based
— numerical studies in [4]: less accurate than the other two limiters

[1] Kuzmin; Proc. Int. Conf. Comp. Meth. Coupl. Prob. Sci. Engrg., CIMNE 1 — 5, 2007
[2] Barrenechea, J., Knobloch; M3AS 27, 525 — 548, 2017
[3] Barrenechea, Burman, Karakatsani; Numer. Math. 135, 521 — 545, 2017

[4] Barrenechea, J., Knobloch, Rankin; SeMA Journal 75, 655 — 685, 2018
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5 Numerical Studies on Accuracy for Different Limiters

e 2d Hemker problem [1]
0e=10"4b= (1,00, c=f=0
o reference solution

solution

o Grid 1: structured, Grid 2: unstructured
o P finite elements

[1] Barrenechea, J., Knobloch, Rankin; SeMA Journal 75, 655 — 685, 2018
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5 Numerical Studies on Accuracy for Different Limiters

e 2d Hemker problem, representative results from [1]

o smearing of the interior layer

1 o % — reference
L . Grid 1, Kuz
FE B8 Grid 1, Bk
- ®® Grid 2, Kuz
Lo} . © o Grid 2, Bk

layer width

0
# dof

o error at cutlines, different refinement levels

02

@ @

£ 2

H 3 o =

g g Y

] g

$ § 02

2 13 2

5 — Grid1,Kuz, | 540-02, [, 5 — Grid 1, Kuz, [el], = 2.159e-02, [[el|.. = 0.137

@ 04 | — Grid 1, BK, | © 704 | — Grid 1, B)K, | -03, 0.059
- Grid2, Kuz, | - Grid2, Kuz, el 144

Grid 2, BIK, ], - 6.4782-02, ], — 0.402 Grid 2, BJK, [, = 1.222€-02, ], = 0.098
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[1] Barrenechea, J., Knobloch, Rankin; SeMA Journal 75, 655 — 685, 2018
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5 Numerical Studies on Accuracy for Different Limiters

e 2d Hemker problem
o [1]: results with BJK limiter considerably more accurate
o but: [2]: nonlinear problems for BJK limiter and £ = 10~ not solvable on fine
grids
— within prescribed maximal number of iterations
— details: see next part of the talk
e experience so far (also with other examples): if nonlinear problems for BJK limiter
can be solved, one gets the most accurate solutions among all studied limiters

[1] Barrenechea, J., Knobloch, Rankin; SeMA Journal 75, 655 — 685, 2018

[2] Jha, J.; submitted 2018
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6 Numerical Studies on Solvers for Different Limiters

e limiters
o Kuzmin limiter [1]
o BJK limiter [2], linearity preserving
e limiters depend on discrete solution = nonlinear problems
e first studies in [3]
o simple academic examples in 2d
o P finite elements
o initial iterate (Zero, Galerkin solution, SUPG solution, Upwind FE solution)
does not possess much impact on number of iterations
— here: SUPG solution initial iterate

[1] Kuzmin; Proc. Int. Conf. Comp. Meth. Coupl. Prob. Sci. Engrg., CIMNE 1 — 5, 2007
[2] Barrenechea, J., Knobloch; M3AS 27, 525 — 548, 2017

[3] Jha, J.; Proc. BAIL 2018, to appear
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6 Numerical Studies on Solvers for Different Limiters

e given iterate u(")
o fixed point iteration with changing matrix

iai‘ m+1)+z<1_ (m)d (ungrl) ~§m+1)> .

j=1
~(m+1) b
u; = U
e fixed point iteration with fixed matrix: using
N
E (1 — aij)dij(u E:dZ]uJ “zE dij — E aijdij(uj — ug),
j=1
W—’
=0
gives
N
(m+1) (m) (m)
g (aij + dij)u = gl—l—g g fis =1 M,
Jj=1
~ 1 .
amry = e, i=M+1,...,N
Algebraic Finite Stabilizations for C ion-Diffusion Equations - Workshop on Computational Modeling and Nu- W

merical Analysis 2019, LNCC - Petropolis, 25-28 February 2019 - Page 39 (53) AS)



6 Numerical Studies on Solvers for Different Limiters

e fixed point iterations
o fixed point iteration with fixed matrix
— matrix is M-matrix
— with sparse direct solver: factorization only once needed
o fixed point iteration with changing matrix
— more implicit approach, hope for better convergence properties
o general fixed point iteration by linear combination

S 0 + ) HH 3" (@D —alm )
Jj=1 Jj=1

N
_ (m) -
= g+ (1 —wyp) E o i=1,..., M,
Jj=1
~(m+1 .
ug ) = uf, i=M+1,...,N
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6 Numerical Studies on Solvers for Different Limiters

o formal Newton method

o formal derivation of Jacobian

DF (u<m>)
K i
dalm™ .
a;j +dij — Ozgn)dij - a’k dix (u,(cm) - ugm)) if i # 7,
-1 9%
- = ) o dafy” (m) _ (m)
aii + dii +Zai]‘ dij _Zﬁdik (“k —u; ) ifi=j
Jj=1 k=1
J#i
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6 Numerical Studies on Solvers for Different Limiters

o formal Newton method: how to deal with non-smooth cases?
e discussion only for Kuzmin limiter
o involves maxima and minima of two arguments, one of them is constant
1. non-regularized approach
— take one-sided derivative w.r.t. constant, i.e., set value to zero
2. regularized approach

— replace maximum for some o > 0 by [1]

mary (z.9) = 5 (o +y+ V=9 +0)

2

— we did not regularized the limiter in the equation, only in the iteration matrix,
since
- in our opinion: solution should not depend on solver
- analytical results from literature not longer applicable

[1] Badia, Bonilla: CMAME 313, 133-158, 2017
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6 Numerical Studies on Solvers for Different Limiters

e general form of the matrix

a5 + dij —wfpozijdij FWjac (term with der. of aij), 1#£ ]
——

fp, const. matrix

fp, changing matrix

formal Newton

o similar for diagonal entries
o neglect entries of formal Jacobian that did not fit in sparsity pattern
o some more modifications for regularized Newton approach

e jteration
WMD) g (m) 4 (m) (g(m—i—l) _y(m)>

o adaptive choice of damping parameter as proposed in [1]

[1] J., Knobloch: CMAME 197, 1997-2014, 2008
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6 Numerical Studies on Solvers for Different Limiters

e further algorithmic components
o Anderson acceleration of fixed point methods [1]

— gives second order information

[1] Walker, Ni; SIAM J. Numer. Anal. 49, 1715 — 1735, 2011
[2] Badia, Bonilla; CMAME 313, 133 — 158, 2017

[3] Jha, J.; Comput. Math. Appl., in revision, 2019
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6 Numerical Studies on Solvers for Different Limiters

e further algorithmic components

o Anderson acceleration of fixed point methods [1]

gives second order information

o projection to admissible values after each iteration as proposed in [2]

DMP holds only for solution of nonlinear problem
projection should ensure this property for intermediate iterates such that
early termination of iteration is possible
projection can be performed only if admissible values are known a priori
projection is simply a truncation
experience [3]:

often no big impact on number of iterations

one example: no convergence with projection; convergence without

[1] Walker, Ni; SIAM J. Numer. Anal. 49, 1715 — 1735, 2011

[2] Badia, Bonilla; CMAME 313, 133 — 158, 2017

[3] Jha, J.; Comput. Math. Appl., in revision, 2019
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6 Numerical Studies on Solvers for Different Limiters

e 2d Hemker problem [1]
0 e€{1074,107%}, b= (1,0),c=f =0
o Kuzmin limiter with P; and @)1 finite elements
o BJK limiter with P; finite elements
o typical result for general fixed point iteration

£=10"", Kuzmin limiter, Q, £=10"°, BJK limiter, P,
25000 25000
5
® @ level 3
@ 10000 =@ level 4 o i
s & & level 5 s |
S 5000F| ¥ level 6 5] bS] |
2 . < |
o ;’? @' 10000 ]‘
T 2000 /! i \ ~
2 1000 2 o
S S -
T 5 B 5000 ;
g 500 . g i ® @ level3 \ 3
2 - = m-a level 4 E
=R N, 9
* 900 T * * @ level5 °
eeoose ° ¥ level 6 |
100 ®e00000e00000, 4 M
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Wy Wiy

[1] Jha, J.; Comput. Math. Appl., in revision, 2019
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6 Numerical Studies on Solvers for Different Limiters

e 2d Hemker problem, further observations (also in the other examples) [1]
o problems with Kuzmin limiter generally easier to solve
o Anderson acceleration
— Kuzmin limiter: number of iterations sometimes considerably reduced, but
sometimes even more iterations
— BJK limiter: failed in all examples
o formal Newton method without damping
— Kuzmin limiter: failed generally
— BJK limiter: sometimes comparably very few iterations
o formal Newton method with damping
— both limiters: number of iterations sometimes considerably reduced, but
sometimes even more iterations

[1] Jha, J.; Comput. Math. Appl., in revision, 2019
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6 Numerical Studies on Solvers for Different Limiters zﬁ@

e 2d Hemker problem, computing times for approaches with fewest number of
iterations [1]

£=10"°, Kuzmin limiter, P, e=10"*, BK limiter, P,
e .
. [[¥= fixed point rhs 10" v fixed point rhs
10" H w—m mixed fp(0.95) =m0 mixed fp(0.95)
. || And. 20 10° || # Newton wo damp.
10" H 4—< Newton adap. <—4 Newton adap.
% 10 3
810 8107
o 13
£ 10 £
= =
10"
10°
3
107 10
10° 10° 10° 10° 10* 10°
dof dof

o fixed point iteration with fixed matrix one order of magnitude faster than other
methods
— sparse direct solver UMFPACK requires only one factorization
— getting the discrete system is very fast

[1] Jha, J.; Comput. Math. Appl., in revision, 2019
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6 Numerical Studies on Solvers for Different Limiters

e 3d Hemker problem [1]
0 e€{1074,107%}, b= (1,0,00",c=f =0
o solution fore = 106

o structured grid
o Kuzmin limiter with P; and @1 finite elements
o BJK limiter with P; finite elements

[1] Jha, J.; Comput. Math. Appl., in revision, 2019
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6 Numerical Studies on Solvers for Different Limiters

e 3d Hemker problem [1]
o typical impact of Anderson acceleration, Kuzmin limiter

e=10"*, Kuzmin limiter, P, £=10"", Kuzmin limiter, P,
500({e-® no And. /l\ ® o noAnd. o
=& And.5 /’ \ =8 And.5
¢4 And. 10 / \ J00l|® ® And. 10
¥—¥ And. 20 // \ ¥—¥ And. 20
E-@ And. 50 / AN o E-8 And. 50

100

# iterations + rejections
# iterations + rejections

10* 10° 10°
# dof

— user-chosen parameter: number of Anderson vectors
— in each iteration, eigenvalue problem of the size of the number of Anderson
vectors has to be solved

[1] Jha, J.; Comput. Math. Appl., in revision, 2019
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6 Numerical Studies on Solvers for Different Limiters

e 3d problem with non-constant convection from
o €€ {107%,1075}, b non-constant, ¢ = f = 0
o solution fore = 1076

o unstructured grid
o Kuzmin limiter with P; and ()1 finite elements
o BJK limiter with P; finite elements

[1] Barrenechea, J., Knobloch, Rankin; SeMA Journal 75, 655 — 685, 2018
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6 Numerical Studies on Solvers for Different Limiters

e 3d problem with non-constant convection, efficiency (computing times) [1]
o linear systems solved iteratively: GMRES with right preconditioner SSOR
o only for fixed point iteration with fixed matrix also UMFPACK

£=10"", Kuzmin limiter, P, £=10"", Kuzmin limiter, P,

, |[v-¥ fixed point rhs (dir) , [[¥¥ fixed point rhs (dir)
10° Fl a—a fixed point rhs (ite) 10" | a—a fixed point rhs (ite)
[ m-m mixed fp(0.60) =& mixed fp(0.60)
10° He— And. 10 10° H e And. 10
< < regu Newton adap. < <4 regu Newton adap.
8§10 810
1 [
£ 100 £ 10
10° 10°
10? 107
10° 10* 10° 10° 10° 10* 10° 10°
dof dof

o fixed point iteration with fixed matrix half an order of magnitude faster than
other methods

— iterative solver for linear systems very efficient (M-matrix)

[1] Jha, J.; Comput. Math. Appl., in revision, 2019
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6 Numerical Studies on Solvers for Different Limiters

e summary [1]
o simplest method by far most efficient in terms of computing times
— fixed point iteration with fixed matrix
— 2d: sparse direct solvers very efficient, only one factorization needed
— 3d: iterative solver for linear system with M-matrix very efficient
o number of iterations of fixed point iteration with fixed matrix usually quite large
o more complicated methods might reduce these only sometimes considerably
o none of the methods needed really few iterations
o solution of the nonlinear problems is still a bottleneck for steady-state problems

[1] Jha, J.; Comput. Math. Appl., in revision, 2019
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7 Outlook

e good discretization for convection-diffusion-reaction equations should [1]
o compute sharp layers
o not compute spurious oscillations
o be efficient in its use
after 40 years of research no method available that ticks all boxes !!!

[1] J., Knobloch, Novo; Comp. Visual. Sci. 19, 47 — 63, 2018
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7 Outlook

e good discretization for convection-diffusion-reaction equations should [1]
o compute sharp layers
o not compute spurious oscillations
o be efficient in its use
after 40 years of research no method available that ticks all boxes !!!
® our opinion
o algebraic stabilizations are a promising class, at least for first two issues
o they should be augmented with geometric information
e important open problems
o steady-state problems: analysis for special grids, analysis for anisotropic grids
efficient solvers for nonlinear problem
o analysis for time-dependent problems

H

[1] J., Knobloch, Novo; Comp. Visual. Sci. 19, 47 — 63, 2018
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